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Figure 1. Visual computing for cohort-based radiation therapy (RT) prediction. A stylized 3D view of the predicted radiation plan of the
current patient is placed centrally; top pale markers (front and back of eyes) receive the least radiation; tumors (black markers) receive
the most. Additional RT views show the most similar patients under our novel T-SSIM measure, who contribute to the prediction; the
most similar patient is currently highlighted (white) for comparison. A scatterplot (left) shows 4 clusters generated through the T-SSIM
measure, with the current (cross) and comparison patient highlighted. A parallel-marker encoding (bottom) shows the predicted (blue
cross) per-organ dose distribution within the context of the most similar patients; spatially collocated organs are in contiguous sections
of the x-axis.

Abstract—We describe a visual computing approach to radiation therapy (RT) planning, based on spatial similarity within a patient
cohort. In radiotherapy for head and neck cancer treatment, dosage to organs at risk surrounding a tumor is a large cause of treatment
toxicity. Along with the availability of patient repositories, this situation has lead to clinician interest in understanding and predicting RT
outcomes based on previously treated similar patients. To enable this type of analysis, we introduce a novel topology-based spatial
similarity measure, T-SSIM, and a predictive algorithm based on this similarity measure. We couple the algorithm with a visual steering
interface that intertwines visual encodings for the spatial data and statistical results, including a novel parallel-marker encoding that is
spatially aware. We report quantitative results on a cohort of 165 patients, as well as a qualitative evaluation with domain experts in
radiation oncology, data management, biostatistics, and medical imaging, who are collaborating remotely.

Index Terms—Biomedical and Medical Visualization, Spatial Techniques, Visual Design, High-Dimensional Data.

1 INTRODUCTION

Modern radiation therapy (RT) has seen large advancements in the
application of computational approaches for imaging and rendering
structural data of a patient. However, once this information is extracted,
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the field requires a high level of human expertise and a tremendous
amount of effort to create and develop personalized, high-quality treat-
ment plans. For example, head and neck radiotherapy planning takes as
long as a week, which, given that aggressive tumors double in 30 days,
deteriorates the chances of tumor control and patient survival [30]. Fur-
thermore, radiotherapy plans also affect organs located nearby a tumor,
resulting in significant toxicity (side effects) and loss of quality-of-life.
There is no current method to predict toxicity before the development
of the personalized plan.

With the emergence of large patient RT data repositories, there is
growing interest in leveraging these repositories to computationally
predict the dose distribution and toxicity for a patient before the ac-
tual RT plan is created. Under a healthcare model termed ”precision
medicine,” such predictions would be based on outcomes registered for
past patients with similar characteristics. These characteristics include
the location of the tumor relative to the nearby organs at risk, which



heavily influences the development of radiotherapy plans.
However, due to a lack of computational methodology to handle

spatial similarity, radiation oncology clinicians rely solely on structural
visual information from medical images, prior knowledge, and memory
to guide the development of radiation plans and to forecast toxicity.
This approach is not scalable.

In this work, we present a visual computing approach to RT plan-
ning, based on spatial similarity within a patient cohort. This approach
introduces a novel spatial measure, T-SSIM, based on tumor-to-organs
distance and organ volume, and its application in a novel predictive
algorithm for dose distribution. The resulting algorithms are integrated
with visual steering to support the algorithm development in a remote
collaborative setting, as well as to derive insight into the role of spa-
tial information. Specifically, the contributions of this paper are: 1)
a novel hybrid topological-structural similarity measure for spatial
data, inspired by an image fidelity technique; 2) the development of
a predictive algorithm for RT dose distribution, based on this spatial
similarity; 3) the design and implementation of an interface to guide
the development of these algorithms, including a novel parallel-marker
visual encoding which is spatially-aware; 4) the application of these
algorithms and design to the emerging field of precision oncology RT
planning, along with a description of this novel domain; 5) a quantita-
tive and qualitative evaluation with collaborating domain experts.

2 RELATED WORK

Related work consists of other projects that deal with: spatial similarity
measures; visual integration of spatial biomedical data with nonspatial
data; and visual steering to assist in model development.
Spatial Similarity. Approaches in bioinformatics, pathology and on-
cology [17, 34, 56, 59] facilitate spatial similarity by encoding spatial
relationships through graph-based techniques. Unlike in our case, the
underlying graphs are often small or constructed manually by clini-
cians [51, 60]. A second class of methods, based on 3D shape-based
similarity, have been successful in shape retrieval applications in com-
puter vision [10,14]. These methods typically experiment with artificial
models such as CAD models or 3D scanner output, and focus on clas-
sifying models of very different shapes. These methods fall short of
distinguishing anatomical objects within the same class, unless the ob-
jects have easily identifiable structures, such as the mandible and outer
body contour [39, 47]. In our case, structures are in the same class and
do not have easily identifiable features. A third class of methods seeks
to apply deep-learning to narrow versions of the similarity problem.
For example, Nguyen et al. [30] use deep-learning to predict dose distri-
bution over a small set of organs in a cohort that had received the same
type of RT plan, using tumor dosage and masks for organ 3D volumes.
However, to date, no method has looked at automatically quantifying
spatial similarity between patients for a large number of organs or a
variety of treatments, or at presenting the prediction methodology in a
way that can be understood by clinicians, as we do.
Visualizing Biomedical Data and Nonspatial Data. Through estab-
lished surface extraction and rendering algorithms, scientific visualiza-
tion of biomedical data has been able to gradually shift its research
focus towards visual computing [20], integration of nonspatial data [16],
and new technologies. For example, instead of rendering magnetic res-
onance data from scratch, Nunes et al. [32] focused on analysis, by
linking existing medical imaging software (MITK [58]) with statistical
views of metabolic data to support delineation of target volumes in RT
planning. In recent RT plan visualization research, Patel et al. [33] use
virtual reality (VR) to visualize RT plans, allowing 3D structure visual-
ization with hue and opacity, as typically done in desktop applications.
Ward et al. [53] describe a VR system for radiation planning that allows
the user to alter beam positions. Although these and other works have
led to advances in viewing and planning specific radiotherapy plans in
detail, none of these works seek to compare RT plans between patients
or make predictions. Two other works [36, 37] have proposed visual
tools for the exploration of uncertain tumor control probabilities in the
prostate, and dose delivery accuracy as a function of bladder shape
analysis, respectively. These works do not consider spatial similarity,
surrounding organs at risk, or the RT plan as a whole.

In terms of spatial-nonspatial data integration, two prevailing
paradigms for integrating spatial and non-spatial features exist: overlays
and multiple coordinated views (sometimes called linked views) [22].
In biomedical scientific visualization, an overlay approach [7, 45,46]
is commonly used when the non-spatial feature is scalar. As the non-
spatial data becomes more complex (connectivity, clusters, dynamic
characteristics, other statistics), the linked-view paradigm [1, 5, 15]
becomes prevalent. Several reports [22, 24, 25] further support the
use of coordinated views in collaborative tasks which involve mul-
tiple users with complementary expertise. Other more recent ap-
proaches [21,25,31] use a hybrid approach that consists of both overlays
and linked views. We follow a similar hybrid approach to support the
exploration of RT plan data.
Visual Steering for Model Development. Visual steering (or inte-
grated problem-solving environments) is a top problem in scientific
visualization [16]. Under this research umbrella, visualization tools for
predictive model development have been developed for domain-specific
applications. Naqa et al. [11] built a visualization tool to help create
statistical models for dose-toxicity outcomes for specific organs, using
a combination of statistical views and model controls. Unlike our work,
their project assumed that the dose-distribution was already known,
and was restricted to individual organs. Poco et al. [35] built a system
for visualizing and developing similarity measures in environmental
data, but focused on abstracted views for improving the measures
without referring to underlying spatial patterns, as we do. Kwon et
al. [18] provided a generic method for clustering model development,
and used it for the development of patient similarity when diagnosing
heart failure, but with no spatial data included. Visual steering tools
based on multiple coordinated views appear also in visual encoding
design [26], engineering [38,54], epidemiology [25], cell signaling [42],
and artificial intelligence [27]; some of these works emphasize visu-
ally adjusting a simulation as it progresses, while others couple the
steering with off-line processes. These methods differ from our goals
in the key consideration of the problem space. We are interested in
developing predictive models using RT medical data, which has unique
requirements related to spatial and statistical data.

3 METHODS

3.1 Domain Background and Problem
In head and neck cancer treatment, RT is often used as a primary or sec-
ondary treatment for patients. Radiation oncology relies heavily on the
use of imaging in order to obtain information about the patient’s tumor
and surrounding organs. Traditionally, data acquisition is accomplished
via magnetic resonance imaging (MRI), computational tomography
(CT), or ultrasound. These techniques provide 2D image slices across
the target volume, that can then be segmented to identify organs of
interest, and used in diagnostics and radiotherapy planning. Current
planning techniques typically use these images overlaid with a color
map, allowing clinicians to ’paint’ the dose across the organ as a way
to visualize the outcome of the different radiation plans [49].

In radiation therapy planning, a primary concern is limiting dose to
organs at risk near the target volume, while maximizing tumor exposure.
For example, a head and neck tumor may receive 66-72 Gy units of
radiation, while nearby organs at risk ideally would receive lower
amounts. Unfortunately, that is not always possible, and radiotherapy
has been linked, by several studies, to organ damage and long-term
toxicity (side effects), including xerostomia (permanent dry mouth), and
swallowing complications [9, 19, 57]. In light of these considerations,
high-precision methods have been developed that allow for complex,
highly conformable radiotherapy plans to be developed and delivered.
Intensity-modulated radiation therapy (IMRT) is one such method.

IMRT allows for delivering more precise dose distributions via mul-
tiple (5-9) different radiation beams, each with tunable intensity dis-
tribution [19]. The increased complexity of these plans comes at the
cost of longer planning time and heavy reliance on clinician knowl-
edge [29]. IMRT plans are typically created through a mixture of expert
knowledge and planning software, with repeated trial-and-error rounds
and consultation between the planner expert and the physician regard-
ing the plan quality and tradeoffs. Beams are typically set up at an



expert-determined fixed height, in order to reduce the problem space
for the optimization software. Constraints are given on the allowable
doses to organs of interest, which typically take the form of maximum
doses to organs at risk, and minimum constraints to the target dose [55].
As a result, the problem space and planning time are expensive, and
there is keen interest in leveraging computational techniques to support
predicting the outcome of the radiation plan earlier in the process.

At the same time, the high incidence of cancer cases has led to the
creation of large repositories of patient data, along with their diagnosis
scans, their respective RT plans, and treatment outcomes. Under the
”precision medicine” healthcare model, practitioners seek to leverage
these repositories in order to predict, for a specific patient, the most
appropriate therapy course, along with the outcomes of that treatment.
Unlike in personalized medicine, the precision medicine prediction
is based on data collected from a cohort of similar patients in the
repositories [24].

While cohort similarity based on abstract data (e.g. genetic sequence
profile) is in general well researched in the statistics community, there is
a general lack of spatial similarity methodology. In the domain charac-
terization discussed in this work, our radiation oncology collaborators
would like to be able to automatically retrieve, given the diagnostic
scan of a new patient, a cohort of patients with similar tumor location.
Currently, this is done based on clinician or institution memory alone,
which is not scalable. Should such an automated similarity measure
become available, the domain experts would then like to analyze the
patterns in the RT plans of the patients within that cohort. Based on that
information, they would like to predict the RT dose distribution for the
new patient and its potential effects, without going through a detailed
RT planning process from scratch. Because these tasks and activities
rely on the visual assessment of spatial similarity and prediction in
terms of dose distribution over the head and neck organs, the problem
stands to benefit from a visual computing solution.

We arrived at this domain characterization of precision RT planning
through a two-year collaboration with a team of radiation oncologists
and statisticians located at multiple geographical sites. During this
collaboration, we (four visual computing researchers) held weekly re-
mote meetings and quarterly in-person meetings with a group of four
radiation oncologists, a data management specialist, and a statistician.
To characterize this novel application domain and design a solution, we
followed an Activity-Centered-Design paradigm (ACD) as described
by Marai [23], coupled with team science principles for remote collab-
oration, previously described [24].

3.1.1 Design Process
We implemented the theoretical ACD paradigm through an iterative,
multi-stage process. After identifying and confirming with our collabo-
rators the main activities to be performed, the research team met weekly
with the domain experts, as the algorithms and application were being
developed and the design refined, to collect feedback, and to verify
that evolving requirements were being satisfied. In concordance with
ACD, we used a quantitative methodology to assess the capabilities of
the resulting solution, and a qualitative evaluation methodology with
note-taking to analyze the user activities.

3.1.2 Data processing
The cohort data for this project is part of a repository of head and
neck cancer patients from the MD Anderson Cancer Center that have
received IMRT. Contrast-enhanced computed tomography (CECT) vol-
ume imaging data from the initial patient diagnoses were retrieved
through commercially available contouring software [44]. Contours
were manually segmented to extract primary (GTVp) and secondary
nodal gross tumor volumes (GTVn), as well as volumes of interest
in the prediction related to organs at risk. Each CECT image was
512×512 pixels, with a slice thickness of 1.25-5mm. Connected tumor
volumes were treated as one volume. After segmentation, we used a
custom Matlab script to extract a list of structural features for each
volume of interest: volume, centroid position, and distance between
each volume of interest, including tumors. Distance was measured as
the minimum distance between the two volumes. Dosimetric data on

the minimum, mean, and maximum dose for each volume of interest
was extracted from radiation plans. Additional data on each patient’s
treatment plan was also included, which included the patient’s tumor
laterality, tumor subsite, and prescribed dose. All patient data was
anonymized; patients were coded using dummy IDs.

45 organs of interest were identified as being of interest by our
oncology collaborators, in addition to the primary and secondary tu-
mor volumes. Of the candidate patients, only those with data on all
45 organs, and at least one primary or secondary tumor volume were
included. Since segmentation and labeling of the data were done manu-
ally for higher accuracy, some anomalies in the dataset were found after
visual analysis. Patients with organ position or mean doses more than
3 standard deviations about the population average were flagged and
analyzed alongside our collaborators using the visual computing solu-
tion, and those with likely erroneous radiation plans were also excluded.
The selection criteria was demographics-agnostic to prevent selection
bias. 165 patients (140 male, age 59+-8.75 years, tumor N-staging [3]
0th through IVth distribution: 32, 18, 91, 6, and 18, respectively) out
of 245 candidate patients were included in the final cohort. The data
could be further filtered based on patient characteristics. Data was then
post-processed in order to compute derived features used in the visual
interface, create dose predictions, and label patients with clustering
results, as described below.

3.2 Algorithms
In order to support computing over images and 3D models (i.e., visual
computing) for this project, we need to design appropriate algorithms
for spatial similarity and prediction, described below.

3.2.1 T-SSIM Spatial Similarity Algorithm
In constructing a similarity algorithm special considerations need to
be made for our problem. First, traditional methods of measuring
similarity along feature vector representations, such as correlation or
mean-squared-error, do not take into account the original structure
inherent in the patient’s anatomy. Second, neither shape-based tech-
niques nor deep-learning techniques are a good match for this problem
(Section 2). Third, the large number of organs-at-risk considered, and
the lack of clinician agreement make infeasible the manual construc-
tion of a 3D graph structure based on the head and neck data. Fourth,
an algorithmically constructed 3D graph-structure would have large
edge cardinality, making graph-based matching algorithms infeasible.
Because of these considerations, we arrived at a hybrid solution: 1) con-
struct a topological structure based on organ adjacency; this structure
will be common among all patients; 2) for each patient, generate two
copies of the structure with tumor-to-organ distance data and volume
data, respectively, specific to that patient; 3) define a similarity measure
over these patient-specific data structures, inspired by image processing.
Figure 2 illustrates this process.

Our spatial similarity algorithm is inspired by the Structural Simi-
larity Index (SSIM) [52], which is traditionally used to measure signal
fidelity when comparing two images. Since the SSIM was designed
for image processing, it takes advantage of an important assumption
about the data: that pixel position serves as a direct analogue of spatial
position. Because our data is already a reduced set of features (organs
and tumors), rather than the original CECT images, this image-based
assumption no longer holds. However, by reformulating the problem,
we can use the spatial data we have to achieve the same effect, as de-
scribed below. We refer to this novel reformulation as the Topological
Structural Similarity Index, or T-SSIM.

In the original SSIM, a sliding window is used to calculate image
similarity between the same local regions in two images. This local
similarity is computed as:

SSIM(A,B) =
(2µ(A)µ(B)+ c1)(2σ(A,B)+ c2)

(µ(A)2 +µ(B)2 + c1)(σ(A,A)2 +σ(B,B)2 + c2)

where µ(A) is the mean of matrix A, σ(A,B) is the matrix covariance
between two matrices A and B, and σ(A,A) is the self-covariance of
matrix A; c1 and c2 are small constants that are used for numerical



Figure 2. Construction of the spatial similarity measure. (A) A sliding window (a sphere, illustrated in 2D here) steps through the centroids of the
organs, to identify nearby organs. (B) Each step in the sliding window constructs a variable-length vector based on the set of nearby organs (e.g., 2
organs in Step 1, 3 in Step 2, 4 in the n step). (C) We create two sets of vectors populated with tumor-organ distances and volumes, respectively, for
each patient. These vectors are used as inputs into a similarity function (T-SSIM) to compare two patients. The vectors can be represented in matrix
form (Subsection 3.2.1).

stability. One of the reasons SSIM uses a local window is because
image features and distortions are often space-variant. The window
serves to isolate pixels within a certain distance from each other, so
window size serves as a direct analog for actual distance. In contrast,
our data is spatially bound to the centroids of each target volume. Thus,
we need to find a way to encode the distance between the centroids,
rather than a pixel distance. While the direct equivalent of a sliding
window would be constructing a 3D area and sliding through different
voxels, most of those voxels would be empty. Instead, we construct a
topological equivalent.

In order to construct a topological equivalent to the SSIM image data,
and create a sliding window analog, we need notation to describe when
two volumes are within a window, for which we will use the concept
of spatial adjacency. Let us define a matrix D|O|×|O|, where di, j ∈ D
denotes the average distance between organs i and j across the cohort.
We define two organs as being adjacent when the average distance
between them is less than a certain distance dmax. Mathematically,
we can write this as o j ∼ oi∀o j, oi ∈ O | di, j < dmax, where the ∼
operator denotes adjacency. If we consider our window to be a 3D
sphere centered at a point, we can define all organs within the window
as all the points adjacent to the center of the sphere (Fig. 2A). For
efficiency, we will only consider the set of windows centered at each
organ. Conversely, we can represent this set of windows as an adjacency
matrix M|O|×|O|:

Mi, j =

[
1 oi ∼ o j
0 else

]
In other words, the row Mi in our topological structure is a row rep-
resenting all organs that are within a certain distance from organ i
(Fig. 2B). Via line search [43] so that the whole topological structure
is connected, we found the optimal parameter dmax as 80mm for the
window size. The topological structure is common across all patients.

The next element we need is a pixel value analog. In our data, each
organ is bound to several variables that could be used. Alternatively,
we can compute similarity over multiple variables, and take a weighted
average of them. The downside of such an approach would be that not
all possible variables influence equally the final result, so using multiple
values would require careful weighing of the values. To overcome this
problem, we consider the underlying formulation of the SSIM.

The original SSIM formulation can alternatively be written as the
composition of three functions for intensity (luminance), contrast, and
structure. These components can be written as:

l(x,y) =
2µ(x)µ(y)+ c1

µ(x)2 +µ(y)2 + c1

c(x,y) =
2σ(x)σ(y)+ c2

σ(x)2 +σ(y)2

s(x,y) =
2σ(x,y)+ c2

2σ(x)σ(y)+ c2

using the same SSIM notations. This formulation allows us to combine
multiple variables. While we found that the distances between the
primary tumor and each organ provided good matches using the original
SSIM formulation, we can augment that measure by considering the
organ volume as another intensity channel.

For notation, let us consider the set of the organs adjacent to organ i,
Mi, and patients A and B. Let us instantiate a copy of the topological
structure with the matrix of tumor-organ distances T |P|×|O| and another
copy with the matrix of organ volumes V |P|×|O| (Fig. 2C), where Ti, j
represents the jth organ of the ith patient. We want to perform cal-
culation over subsets of adjacent organs that we encoded in M. We
can write each of these local subsets of values as Mi ·Tj = T (i)

j and

Mi ·T =V j =V (i)
j . Put simply, T (i)

j is the set of tumor-organ distances
for all the organs near organ i, for patient j. With this notation, we can
now define local similarity as:

fi(A,B) = l(T i
A,T

i
B) l(V i

A,V
i
B)c(T i

A,T
i

B)s(T i
A,T

i
B)

By summing up the local similarity scores along the entire set of
organs, we obtain a similarity score for patient A and patient B. We can
then generate a matrix of similarity scores S|P|×|P|, where each entry is:

SA,B =
∑
|O|
i=0 fi(A,B)
| O |

Scores are normalized across the dataset to be between 0 and 1. In
Fig. 1 right, note how this measure successfully retrieves patients with
similar tumor location.

3.2.2 Prediction and Statistical Analysis
To predict a patient’s dose distribution, we use a weighted k-nearest-
neighbors algorithm, which is a common method of prediction in
similarity-based health models [41]. The dose distribution prediction
was calculated as the per-organ dose average of the k most similar
patients:

Radpredicted
i, j =

∑n∈Ni
Sn, jRadn, j

∑n∈Ni
Sn, j

where Rad|P|×|O| is a matrix of radiation doses across the cohort, Radi, j
denotes the radiation dose to the jth organ for the ith patient, and Ni is
the set of the k most similar patients to patient i.

Even before applying clustering to this similarity matrix, we started
noticing unusual groups of patients forming based on this similarity



measure, and specific patterns of radiation distribution. An immediate
goal became to perform clustering and statistical analysis using this
spatial measure, and incorporate the resulting information: each patient
was labeled with a cluster computed separately from the similarity
measure, as discussed in Section 4. To allow for the dosimetric and
tumor-organ distance data to be viewed across the whole dataset, princi-
pal component analysis (PCA) [12] was done on the matrix of radiation
doses Rad and tumor-organ distance T . When making a prediction,
only patients within the same cluster were considered. When analyzing
the optimal number of matches for our prediction (Section 4), we found
that the number varied with the size of the cluster, and making the
parameter tunable for different clusters helped improve performance.
After testing different parameters via line search [43], we found that a
good number of matches to use was the square-root of the cluster size.

Because the input RT plans already consider maximum organ doses,
and minimum target constraints [55], the predicted results fall within
clinically acceptable ranges. All data processing, calculations for simi-
larity, predicted dose, and PCA were computed offline, and information
was exported as a JSON file for use in visual steering.

3.3 Visual Steering Design

Once the visual computing algorithms are defined, a visual analysis
interface enables the domain experts to steer the further development
of these computation processes. By introducing an interactive visual
steering component, we are able to leverage domain-specific knowl-
edge, and support the discovery of patterns in the data. The visual
analysis component of this application (Fig. 1) followed multiple de-
sign iterations, aligned with the similarity algorithm and prediction
algorithm development. The final prototype design was designed to
support the following activities (i.e., sets of tasks), derived from the
domain characterization: (1) analyze the result of data clustering and
similarity measures in the context of the entire cohort, and of spatial
and dosimetric data, (2) analyze the inherently spatial dosimetric data
extracted from the patients’ scans and radiation therapy plans in a
way that is visually intuitive to the domain experts, (3) compare those
similar patients used in dose predictions, (4) analyze the result of our
T-SSIM patient similarity measure, and (5) analyze the results of the
dose prediction algorithm.

The final prototype comprises several coordinated views. We chose
to use linked views because they allow visual scaffolding from familiar
visual representations to less familiar encodings [22]. Unlike public
health research, which is focused on cohorts, precision medicine is
about the treatment of a specific patient, so the entry point to the
application is a search box for a specific patient within the cohort
(the default is the first patient). Because radiation oncologists are
familiar with RT plan renderings, a 3D stylized radiation plan of the
selected patient is placed centrally on the screen (activities 2 and 3).
Additional RT views for the most similar patients give the patient a
local context, and allow users to assess how the prediction algorithm
is being used concretely (activities 3, 4, and 5). To support analysis
within the cohort, and allow for clustering studies context (activity 1),
a scatterplot shows the clustering data among different dimensions that
can be explored. Finally, we provide a novel encoding that allows for
the local dose distribution of each organ of interest to be understood
within the context of the k most similar patients (activities 3, 4, and 5).
By linking the views, we provide a way of allowing specific plans to be
understood within context, and we support a variety of workflows for
exploring the data. We describe each component in detail below.

3.3.1 Stylized Radiation Plan Renderings

Centrally in the visual interface is a stylized 3D rendering of the ra-
diation plan for the selected patient (Fig. 3). Organs of interest are
represented as circles drawn at the organs’ centroids. In order to reduce
issues with segmentation and allow the visualization to be rendered
without requiring information on the entire 3D contours from the CECT
scans, the organ shapes are represented using transparent, generic 3D
VTK models, centered at the centroids of the target volumes. A slider
changes the opacity level of the organ models in the radiation plan, as

well as the color-scale to the right of the radiation plans. By combin-
ing centroid data and generalized models instead of full 3D contours,
we effectively reduce the computational requirements of the system
and minimize visual occlusion while still showing a recognizable 3D
structure of the patient anatomy. We encode dose to each organ with
the luminance of the respective centroid node and model; we encode
larger doses with darker values. Gross Tumor Volumes (GTVs) are
shown only as nodes located at the tumor centroids, drawn in black, to
make then identifiable, as there are no corresponding 3D contours for
these regions. Additionally, when both a primary tumor (GTVp) and
secondary (GTVn) are present, a line segment is drawn between these
nodes, to further emphasize their spatial relationship. These stylized
3D views, as well as a miniature cube with orientation labels (scene
bottom-right corner), can be rotated in sync by direct manipulation
to allow the user to more easily see specific areas while still being
able to quickly recall the current orientation. Additional marks, labels,
and details on demand display information about organ names, dosage,
volume, and tumor location, to help correlate information across the
views. This stylized 3D view was the result of several design iterations,
ranging from highly stylized node-link renderings of the organs to
fully-fledged volume renderings, and a variety of markers and labels to
indicate current orientation and details.

Because one of the goals is to be able to analyze the result of the
prediction algorithm, tabs above the radiation plan allow the user to
change the view to the predicted plan, and to the prediction error in
the plan. We encode the prediction error using a blue hue in order to
distinguish which information is currently shown.

A separate, scrollable panel (Fig. 1 right) shows similar stylized 3D
views for the nearest-neighbors of the selected patient, sorted by de-
scending similarity. Allowing the user to control the matched radiation
plans separately supports the placement of those plans near the selected
patient plan, for easier comparison. For these neighbor RT plans, the
similarity score between the given patient and the currently selected
patient is shown in the top-right corner. Two color scales, automatically
populated to encode the upper bounds of the doses found in the dataset,
serve as a visual reference for colormaps, as well as inform the user of
the minimum and maximum mean dose, and prediction error in the data.
A neutral 18% gray background was used to allow for better contrast
with the transparent colored visual encodings used in the RT views, at
both high and low values [4, 13, 40].

3.3.2 Scatterplot View

A main activity of interest to our collaborators was being able to ana-
lyze clustering results in the data. Additionally, we wanted a way to
find correlations across the dataset, to help identify where the largest
prediction errors were occurring. Since the main data of interest was
the relationship between spatial information and the radiation plan,
followed by dose prediction, we selected the distances between the
GTV and the 45 organs of interest and the dose information, respec-
tively, as two of the feature spaces that could be viewed. For these
feature spaces, PCA was done to project the 45 data dimensions to two.
After several visual computing iterations and further discussion with
collaborators (described in the Evaluation section), it was determined
that tumor volume was also an important factor, and so it was included
as an additional space. Since tumor volumes are usually categorized
in 3-4 discrete stages, we used both the GTVp and GTVn volumes as
proxy values to allow for better discrimination among the cohort.

Patients in the scatterplot are color-coded according to cluster labels.
The number of clusters shown was decided also through several design
iterations, described in Section 4. In order to allow for easier percep-
tion of outliers, an envelope is drawn around each cluster. Animated
transitions when changing the axis variables in the scatterplot allow
for a visual understanding of how the different clusters are distributed
across multiple dimensions (Fig. 4). Tooltips on the scatterplot allow
the user to view the name, size, mean dose, and mean prediction error
for the entire cluster.

Markers in the scatterplot are sized by the error in the radiation dose
prediction for each patient to allow easy identification of patterns in
prediction error, and to find outliers in the data. By default, patients



Figure 3. Three stylized views of the 3D radiation plan for Patient 152 showing the actual (left), the predicted (center), and the prediction error (right,
in blue) in the radiation plan. Circular markers indicate the location of organs at risk, and black markers indicate the tumors. Red luminance is
mapped to the radiation dose (higher dose mapped to darker shades) and blue luminance is mapped to error size. Transparent organ models are
shown for context. The pale markers at the top correspond to the eyes, and the lowest marker is located down the spine.

are represented as semi-transparent circular markers, while a different
shape is used for the patient in focus (a cross) so they can be more
easily identified via pre-attentive cues. In an application of Tufte’s
layering and separation principle [48], patients used as matches for the
selected patient are given a higher opacity and larger border so that
they can be identified among the rest of the cohort. Additional tooltips
allow the user to view the patient ID, position, mean dose, prediction
error, cluster, and current position in the scatterplot.

3.3.3 Parallel-Marker Plot for Organ Doses
While rendering the radiation plans in 3D provides an intuitive under-
standing of the relationship between the anatomical structure of the
patient and the radiation plans, it proved insufficient for understanding
the details of how the dose prediction was generated for each organ. Of-
ten, the dose distribution will vary significantly in a few organs across
the cluster, while others, such as the brainstem and eyes, show little
variance. In addition, a small number of matches means that a single
outlier can strongly skew the distribution for certain organ predictions.

As a result, we wanted a way to explore and analyze the dose distri-
bution across the matches used for the prediction, while keeping track
of spatially-collocated organs. Because predictions are based on a small
number of patients at a time, traditional statistical plots such as box
plots or violin plots are not appropriate for this task, as a single outlier
would skew them. Likewise, encodings that rely on size to encode
distribution density require excessive screen real-estate to be visually
discernible, which is infeasible when visualizing a large number (45
organs) of distributions.

Instead, we introduce a spatially-aware parallel marker encoding
to fit our goals (Fig. 1 bottom). The encoding uses a parallel coordi-
nate system, where the x-axis is divided into equal-length bins, each
corresponding to one organ of interest in the radiation plan, not includ-
ing GTVs. To encode spatial organization of anatomical marks, we
started by grouping the 45 organs into 6 different categories (Throat,
Oral Cavity and Jaw, Salivary Glands, Eyes, Brainstem & Spinal Cord,
and Misc), which were determined after discussion with our radiation
oncology collaborators, and we laid out organs within each category
contiguously along the x-axis. A vertical line is extended up the center
of each bin to provide a visual reference. The order of the axes is fixed
and based on the anatomical groups. The y-axis encodes dose, scaled
based on the minimum and maximum dose found in the entire dataset.
Moving the mouse into a bin highlights the vertical line for that bin, and
brings up a tooltip giving the name of the organ, the predicted organ
dose, and the actual organ dose for the currently active patient.

Within each bin, the dose to the specific organ is encoded by one

marker per each patient considered for the current prediction. We
chose to plot each patient point individually, given the relatively small
number of points in each bin. By making makers semi-translucent,
regions where several points overlap appear as more opaque, giving a
visual indicator of density. The current patient is denoted by a different
shape (cross), while matches are shown as dots and colored based
on their clusters, maintaining consistency in color and shape with the
encodings in the scatterplot. The predicted dose is also denoted by a
cross marker, colored in blue. The size of dot markers is based on the
computed similarity with the given patient. This encoding serves as a
visual metaphor, as larger dots carry more ’weight’ in the prediction,
and the predicted dose is effectively at the center-of-mass of the dots in
each bin. We converged to this composite encoding after experimenting
with and discarding parallel coordinate plots, as well as a variety of
other axis encodings, markers, and channels.

The different views are linked through color, marker shapes, and
brushing and linking. For example, when the user hovers over the
encoding of another patient, all other encodings related to the same pa-
tient are highlighted in white (Fig. 1). Additionally, the user can select
a patient to bring into focus by clicking on a point in the scatterplot or
clicking on the patient ID label above their radiation plan. The data
processing and algorithm for our system was implemented in python,
using the NumPY library [50] for doing numerical computations, and
Pandas [28] for data-processing. The front-end visualization was im-
plemented as a web-based tool using HTML, CSS, and Javascript, with
the three.js [8] and d3.js [6] libraries.

4 EVALUATION AND RESULTS

Because of the visual computing nature of this project, we use a hybrid
quantitative and qualitative evaluation methodology shaped along two
case studies. We first present a case study of how visual analysis
was used in conjunction with our similarity measure to help develop
and improve the prediction algorithm. Along with this discussion,
we present quantitative data about the prediction performance. In the
second case study, we present a qualitative evaluation done with four
senior domain experts in data mining, biostatistics, cancer medicine,
and medical imaging.

4.1 Case Study: Algorithm Development
One of the topics of interest to our collaborators was understanding
the importance of structural similarity in predicting radiation plans.
However, traditional prediction methods are complicated by the fact
that radiation plans can vary widely based on subjective planning factors
that can be patient-case, clinician, or institution specific. In this first



Figure 4. Two configurations of the scatterplot. The data can be plotted
across the principal components of the radiation doses (top), primary
and secondary tumor volumes (bottom), and principal components of the
distances between each organ and the primary tumor volume (see Fig. 1
top left).

analysis, we discuss the development and performance of our prediction
algorithm in conjunction with this goal, demonstrate how insight from
the visual computing tool was leveraged to help improve the prediction
algorithm, and how visualization can be used to convey the results to
clinicians, to allow for better expert feedback in the algorithm design
process.

We begin by first describing our measure for quantitatively assessing
the success of the prediction algorithm. Given that for each patient in
the cohort we have access to the actual RT plan for that patient, the
accuracy of prediction across the cohort can be computed via leave-
one-out validation, as follows: 1) for each patient in the cohort, use
the tumor-to-organ distances and organ volumes to determine the most
similar patients in the cohort via the T-SSIM similarity measure; 2) use
the set of similar patients’ RT plans to predict the dose distribution per
organ (i.e. the RT plan) of the current patient; 3) compute and report
the prediction error as the difference between the predicted RT plan and
the actual RT plan for that patient; 4) report the mean error across the
cohort. In assessing error, we chose to compute the total absolute error
for each patient. We decided on this measure over root mean squared
error (RMSE), because RMSE is typically used to more strongly punish
outliers.

Using the similarity measure and prediction algorithm without divid-
ing the cohort into clusters, we initially found a mean prediction error
of 16.68%, or 6.15 Grays (Gy), with a standard deviation of 9.31%. We
compared this method to the naive method, where the predicted dose
distribution is simply the average of the entire cohort. Using this naive
method, we get a mean error of 20.62%, or 7.48 Gy with a standard
deviation of 14.0%, which was suspiciously close to the performance
of our initial prediction.

To better understand these results, the data and outliers were in-
spected using the visual steering tool. For each outlier prediction in
the dataset, we inspected the k nearest neighbors selected for the pre-
diction in the RT panel adjacent to the outlier patient. Where visual
inspection did not pick up on subtle cues, the dose distribution plot
was particularly useful in helping identify suspicious neighbor matches.
Using the RT views, RT outliers were found to belong in three distinct

Figure 5. Example radiation plans for the 4 different patterns identified in
the data. Top left: a plan with a higher dose to the lower-anterior throat.
Top right: a plan with a ’standard’ dose distribution, where radiation is
lower in the throat and distributed to both the left and right sides of the
head. Bottom right: a plan with dosing primarily to the right side of the
head. Bottom left: a plan with dosing primarily to the left side of the head.

pattern classes. Patients in these classes had larger errors, suggesting
that they had peculiarities in their dose distribution that were not being
captured by our similarity measure alone. RT plans for the patients in
the 3 classes were analyzed and discussed with our radiation oncology
collaborators and contrasted with patients with good predictions. In
this manner, we identified four distinct patterns in how the RT plans
were distributed (Fig. 5). This finding was subsequently confirmed in
the scatterplot panel. The first, largest group was the ’standard’ plan,
recognized by our collaborators as most common for the cohort. An-
other group comprised a subset of the patients that received additional
radiation to their lower throat, near the larynx. While surprised by this
finding, our collaborators found this second RT plan type consistent
with results reported by Amdur et al. [2]. Amdur et al. discussed the
choice of delivering additional irradiation to the larynx in patients and
compared it to other methods of irradiation that largely avoid irradiat-
ing the larynx at all, leading to two potentially highly different dose
distributions based on subjective choices made by the physician. The
remaining two plan types were groups that appeared to have received
highly unilateral radiation to only a specific side of their head, with
the two groups corresponding to the two sides of the head. The radi-
ation oncologists were enthusiastic and surprised by the power of the
measure in making these findings possible. It was determined after
discussion with our collaborators that the differences between the four
plan types were likely due to radiation planning methods related to
several other factors than tumor location, including the health of the
patient, the tumor staging, and whether a biopsy had previously been
done on the primary or secondary tumor.

Given this insight, we investigated introducing four clusters into
the prediction, based on the different radiation plan archetypes found.
This time, by only considering similar patients within the same cluster,
our prediction error dropped to 12.3%, or 4.71 Gy, with a standard
deviation of 4.43%. When normalized by prescribed dose, the total
prediction error is 6.87% across the four clusters and for the 45 organs



Figure 6. Snapshots of key moments during the qualitative evaluation. (A) Picture of the dose-PCA scatterplot on the reduced cohort using the
clustering provided by GC. Clusters visibly divide the feature space despite being done without dose information. (B) RT plan for the patient being
inspected (shown in (A) as the cross cyan marker, circled here in red). (C) RT prediction error for the patient. Error rates are highest on the left side
of the head. (D) Close up of the dose-distribution. One of the matches (highlighted) is significantly further from the other matches. (E) Parallel-marker
dose plot of the patient and its matches. Doses from the suspicious match (highlighted) are significantly lower for several adjacent areas. (F)
Radiation plan of the suspiciously-matched patient, who, despite a similar tumor location, received almost no radiation to the left side of their head.

considered. Beyond the ability of the measure to identify the four
RT classes, this prediction power was considered remarkable by our
medical collaborators.

4.2 Case Study: Toxicity and Clustering Outlier

Because our project aims to support expert researchers in a specialized
domain, we performed a remote qualitative evaluation with four senior
domain experts, who are co-authors on this paper (GC, DV, BE, GM).
The experts have backgrounds in data mining, biostatistics, radiation
oncology, and medical imaging, respectively. All participants were
familiar with the visual computing application throughout its develop-
ment stages. Because of the experts’ participation in the design process,
the lack of an alternative existing system to solve the same problem,
and in further accordance with the ACD paradigm, the evaluation was
focused on the functionality of the application with respect to the target
problem. Participants were given a briefing on the different components
and basic functionality of the visual interface and were encouraged to
ask questions to guide the exploration of the data and results. The first
author navigated the application with direct guidance from the partici-
pants, who were shown the same screen and were able to communicate
with each other.

The main goal was to investigate whether our similarity measure can
predict whether a patient will develop a particular toxicity (side-effect)
after RT treatment, such as requiring the insertion of a feeding tube
(FT). There are no current algorithms that can accomplish this type
of prediction. The starting point of this investigation was a subset of
92 patients in the cohort for whom toxicity data was readily available.
Collaborator GC had generated a clustering of this subset using our
similarity measure, with the aim of correlating the tumor-locations
and RT plans with the toxicity data. The clustering had yielded three

clusters, one of which was statistically correlated with the feeding tube
toxicity.

The investigation (Fig. 6) started with the group examining the
resulting clusters. Clustering had been done on the patient similarity
scores provided by our similarity measure, and no expert (including
GC) had seen the labeled results before in the context of the patient
spatial information. The analysis started with the scatterplot visualizing
the clusters, followed by targeted questions about the three PCA tabs.
In the organ-dose plot, a collaborator noted that the clustering visibly
divided the patients into separated groups. This was exciting to the
group, given that the clustering had been done over the spatial similarity
only, independent of dose. One of the visual computing researchers
pointed out the cluster that was statistically correlated with the feeding
tube outcome (navy cluster in Fig. 6.A).

Upon further inspection, the group noted that some of the matches
within a different cluster (cyan cluster in Fig. 6.A) were far apart in the
organ-dose plot, while being close in tumor-organ distance plot. The
group asked why that was, and proceeded to examine the RT views
of that patient (Fig. 6.B), followed by the patient’s predicted RT plan.
Upon noticing spatially-localized higher prediction errors (Fig. 6.C),
the group proceeded to examine the RT views of the nearest neighbors
who had been used to compute the prediction. By linking the view of
each neighbor with the corresponding highlighted mark in the organ-
dose scatterplot, the group was able to determine a suspicious match:
while the tumor location in the neighbor was very similar to the one
in the patient under consideration, the two patients were far apart in
the dose-distribution plot (Fig. 6.D). A detailed investigation of the
two patients and their matching followed, this time using the parallel-
marker plot (Fig. 6.E). One of the experts noted a localized difference
in a contiguous subset of organs in the marker plot (last quartile of



x-axis), and as the group circled back to the RT view of the match, they
noticed that the neighbor’s RT plan featured a low dose to half of the
head (Fig. 6.F). The expert in radiation oncology explained that the
way the radiation plan was done could have been affected by a number
of factors, e.g., whether a biopsy had been performed on the patient’s
lymph node. This led to a group discussion of the earlier case study and
the usefulness of including a fourth cluster in the analysis, potential
ways to incorporate more patients, and future plans to predict other
toxicity outcomes based on the RT prediction.

An interesting result of this evaluation was the ability of the different
domain experts to guide parts of the visualization and ask questions to
each other. The collaborator with a background in data mining under-
stood principal component analysis, and was able to explain the plot
tabs to another expert. Instead of stopping the investigation with a con-
venient p-value finding, the group continued to examine the clustering
that had generated that outcome, and were able to spot outliers and
suggest improvements to the clustering. The medical imaging expert
caught on the spatial dose pattern and explained it to the other special-
ists. When analyzing why two patients were being matched despite
having notably different dose profiles within the clustering, the expert
in radiation oncology provided the rest of the group with a clinical
rationale for that fact. The statistician picked up on that interpreta-
tion, and suggested additional data collection. The group was able to
efficiently use the whole system in order to make an important obser-
vation. Overall, we believe that this evaluation highlights a potential
for visual computing methods such as these to support interdisciplinary
collaboration more effectively.

5 DISCUSSION AND CONCLUSION

This work introduces a hybrid, topology and image-fidelity, approach
to creating an RT spatial similarity measure. Our results show that the
resulting measure can successfully retrieve patients with similar tumor
location. The similarity measure was then successfully used to make a
valid prediction of RT dose distributions in a new head and neck cancer
patient. The development of this measure and prediction algorithm
was made possible through a visual steering approach, where a visual
interface coupled with the spatial algorithms enabled us to identify and
analyze situations where early algorithm versions failed. The same
approach enabled us to identify four specific RT patterns in the data,
and, in conjunction with the spatial similarity measure, to improve
prediction. When evaluated on a dataset of 165 patients, the prediction
had low mean error: 4.71 Gy, compared to doses per organ as high
as 70-90 Gy. We also observed low 4.43% standard deviation in the
computed error, suggesting high certainty in our prediction. This type
of certainty is particularly important when dealing with life-affecting
patient outcomes. In conjunction with clustering, the spatial measure
enabled detecting correlation between patient groups and a specific
toxicity, paving the way towards precision medicine that leverages
spatial information in patient data repositories.

Another result of this integrated approach is the ability to visually
assess outliers and problems in the data. Since our data relies on
segmentation of complex CECT images, problems in the data are to
be expected. The high-dimensional nature of this data, combined with
a relatively small dataset, makes outlier detection using traditional
methods difficult. Additionally, automatic outlier detection methods
are insufficient, since the presence of different clusters in the radiation
plans means that new data could appear to be outliers, when in fact they
are valid, but uncommon, RT plans, or that bad data can insidiously look
’normal’. However, by visualizing outliers, we were able to consult with
experts in order to determine if the resulting anatomies and radiation
plans are plausibly valid, or can be removed. For example, two patients
in the cohort had several organs, including their eyes, positioned near
the base of their throat. While these configurations are physiologically
impossible, they were not detected in standard outlier detection, and
even showed high similarity scores with each other.

Our qualitative evaluation also shows that an approach grounded in
the ACD paradigm and visual scaffolding principles can lead to a satis-
factory outcome for a difficult scientific problem. Using this approach,
collaborators with a variety of complementary expertise were able to

work together in order to gain insight into the relationship between spa-
tial information and RT plans. A coordinated-views paradigm allowed
us to leverage visual representations familiar to some of the experts, in
order to expose those experts to novel or unfamiliar encodings. For ex-
ample, oncologists were able to make connections between RT volume
renderings and the cluster and parallel-marker encodings. In the same
vein, we note that our parallel-marker plot builds on familiar statisti-
cal plots while accommodating fewer samples and spatial contiguity.
Because these visual encodings were developed through participatory
design, we do not explicitly report feedback, which was enthusiastic,
from our collaborators.

While our approach and spatial algorithms are generalizable to other
problems in medicine and elsewhere, we note that there are limitations
as well. First, details of an RT plan can change based on factors specific
to the clinician and institution. For example, we have seen in our
data that there are many cases where two patients are similar in terms
of tumor location, but one patient has highly-unilateral dosing. When
generalizing a prediction method, we have to consider that other clusters
could arise due to differences in the data, as well as technological and
methodological differences between institutions. As a result, being
able to inspect the data and leverage clinical knowledge is an essential
function that can be accomplished through the use of visual computing.

Furthermore, while our current measure can encapsulate volumetric
and spatial information, microscopic as well as higher-level information
on the organ structure, such as shape and orientation, could be relevant
and could also be included. Additionally, computing the similarity
scores requires |Cohort |2 computations, where |Cohort | is the size of
the cohort, and so it is done offline, while more sophisticated clustering
methods are run off-site. This means that currently, online analysis
can take place only once the results are generated. On 5 trials using a
machine with 8GB DDR4 RAM and Intel i5-7200U 2.5GHz processor,
the offline calculation took under 10 minutes (100.5s for processing
and 476.5s for prediction, on average). This amount is negligible
compared to the week-long IMRT planning process, which also requires
medical professional input during the planning. In addition, our parallel-
marker plot, which works well for 45 organs, has limited scalability
to thousands of measurements. Finally, while our approach does not
rely on learned parameters, we need to specify two meta-parameters:
window size for computing organ adjacency, and an optimal number of
matches to use in the prediction, which may affect generalization. In our
study, we found the optimal parameters via simple optimization [43].

In conclusion, we presented a visual computing approach to support
the development of a predictive algorithm to estimate radiotherapy plans
in head and neck cancer patients. We introduced a novel, hybrid way
of measuring anatomical similarity based on topology and measures of
image fidelity. This similarity measure was then used in the emerging
field of precision oncology, to retrieve patients in a cohort who are
likely to have similar radiation plans and outcomes. By tightly coupling
a visual analysis interface and a novel encoding with our algorithms,
we derived valuable insight into the role that spatial information plays
in radiation therapy planning, and were able to drive the development
of the predictive algorithm. This visual steering approach is supported
by coordinated views of spatial and nonspatial, statistical data. These
views allowed domain experts in radiation oncology, statistics, data
management and medical imaging to explore the data from different
perspectives. Ultimately, the visual computing methodology presented
in this paper enables calculations and insights into medical data that
were otherwise not possible.
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analytics for the exploration of rt-induced bladder toxicity in a cohort
study. In Computer Graphics Forum, pp. 205–216, 2018.

[37] R. G. Raidou, O. Casares-Magaz, L. P. Muren, U. A. Van der Heide,
J. Rørvik, M. Breeuwer, and A. Vilanova. Visual analysis of tumor control
models for prediction of radiotherapy response. In Computer Graphics
Forum, pp. 231–240, 2016.
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