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SUMMARY

There is a steadily growing interest in leveraging ecosystems of digital devices that go

beyond a single desktop for collaborative visual data analysis and exploration. This new

thrust of multi-device interfaces supports new models for complex collaboration scenarios,

and have great potential to support analysts in their data analysis by utilizing each device’s

capabilities. However, there are some challenges inherently associated with visual data

analysis in multi device environments (MDE). This dissertation investigates how the

analytical process occurs in multi-user multi-device environments to provide a theoretical

understanding of collaborative exploratory visual data analysis and better inform the design

of visualization tools. First, I touched on the challenges of designing cross-device



visualization tools by introducing the design and implementation of a multi-device system for

collaborative visual data analysis that enables cross-device visualization sharing and

simultaneous interaction. Then, through an exploratory user study, I evaluated strategies of

exploratory visual data analysis in a collaborative multi-user multi-device environment. I

synthesized a two-level characterization of the analysis structure from observed analysis

behaviors. I observed that subjects navigate the data space in three identified exploration

patterns and the analysis was primarily depth-oriented. In addition, the cost of deciding what

to explore next “Gulf of Goal Formation” is higher in collaborative settings due to short-term

memory and the recency effect. I hypothesized that visualizing the dimensions search space

would increase the breadth of the analysis and reduce the decision cost. Using a

between-groups study, I evaluated the effect of revealing information about what

xiv
SUMMARY (Continued)

dimension’s data space coverage(s) were investigated and what were left. The results

indicate that visualizing dimensions search space increases the breadth of the analysis and

reduces the decision cost by positively affecting the rate of views generation.
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CHAPTER 1

INTRODUCTION

Parts of of this chapter were previously published as: Alsaiari, A. and Johnson, A.



(2019). “Towards Understanding Collaborative Visual Data Analysis in Multi

Device Environments”. In 2019 IEEE VIS.

Visual Analytics, as defined by Cook and Thomas in their Research and Development

Agenda, is “the science of analytical reasoning facilitated by interactive visual interfaces” (5).

The analytical reasoning is an iterative process that involves cycles of visualization creation,

interaction and refinement. Therefore, Visual Analytics tools facilitate the human reasoning

process by the means of technological support and analytical techniques.

With the increased amount of data that comes from different sources and domains, visual

analytics became rarely a solitary activity. Analysts from different backgrounds need to work

together to contribute their contextual knowledge and create a better understanding of their

data. The integration of visualization and collaboration into a new direction of research

imposed new challenges for designers and generated new prospects for researchers to

expand the state of art design and evaluation of visualization tools. Designing for

collaborative visual data analysis requires special considerations to fully support the sense

making process (6).

As shown in Figure 1, collaborative visualization can occur in four different scenarios clas

sified over time and space. Co-located collaborative systems involve a shared workspace

such

1
2



Figure 1: Different
scenarios of collaborative visualization classified over time and space (1)

as large displays or tabletops, while distributed systems involve a shared virtual workspaces

for remote collaboration.

Visual data analysis tools should support suitable social interactions according to the type

of the collaborative environment. A rich body of research investigated the design of visualiza

tion tools for co-located (7) (8) (9) and distributed collaboration (10), each of which required

unique design principles derived from the visualization and computer-supported cooperative

work (CSCW) communities. Besides the technical aspects, a vast majority of past research

has focused on more human-centered questions to address issues regarding work

coordination, sharing, and groups’ awareness in co-located and distributed settings.

3



With the popularity and availability of various types of devices with different input and out

put modalities, a new thrust of research has emerged to explore the potential of these display

technologies in supporting analytical reasoning and sense making. Multi-device

environments (MDE) have great potential to support analysts in their data analysis by

utilizing each de vice’s capabilities. However, little is known on how to design visualization

tools for multi device environments to support efficient visual data analysis. This research

investigates the design of visualization tools for collaborative exploratory visual data analysis

in multi device environments.

1.1 Motivation

Recently, there has been an increased interest in leveraging ecosystems of multiple

devices for collaborative visual data analysis (11) (12) (13) (14) (15) (16) (17) (18), imposing

the need to rethinking the design and evaluation of visualization tools for these

environments.

This new thrust of leveraging multi-device environments for visual data analysis supports

new models for complex collaboration scenarios and provides the means for users to

immerse themselves in their data by creating flexible and mobile exploration territories.

However, there are some challenges inherently associated with visual data analysis in

multi-device environments.

First, as the analytical process is underway, many visualizations become scattered

among different devices and displays. Building a mental model of the analysis flow can

render the analytical process more challenging as it would be difficult to track many

visualizations. There fore, it’s difficult for analysts to keep track of all the prior analyses and



the cost of deciding what to explore next can be even higher. Analysts in collaborative

settings need to understand

4

Figure 2: This research investigates the design of visualization tools for collaborative
exploratory visual data analysis in multi device environments.

what courses of analysis were investigated by team members and what were left. Therefor,

supporting exploratory visual data analysis is essential especially when multiple analysts

work together in a setting beyond the single desktop.

In addition, with factors such as the recency effect and the short-term memory, they tend

to remember the most recent exploration. This can affect the breadth of the analysis. The

tendency to recall the most recent items encourage a depth-oriented exploration. Therefor,

visualization tools should promote a breadth-first analysis.

1.2 Thesis Problem

Motivated by the above-mentioned challenges, this research explores the collaborative

visual data analysis in multi device environments. The goal is to investigate how the



analytical process occurs in this multi-user multi-device environment to provide a theoretical

un-
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derstanding of collaborative exploratory visual data analysis and better inform the design of

visualization tools.

This dissertation investigates the following research questions:

RQ1: In the first phase of this research, I started with an exploratory study to address the

question of what is the complex picture of users’ experience during a collaborative visual

data analysis in a multi-user multi-device environment?

Activities in multi-device environments can be complex. It is important to understand

aspects around tools, users, and tasks, and how these aspects shape the analysis process.

Un derstanding the analytical strategies and their associated challenges will help us to

identify important design considerations and requirements that support some of these

challenges.

Earlier studies that aimed to understand the collaborative process of visual data analysis

focused on a few elements (display use, processes, work styles, etc.) as they address

group’s work around a single display. To capture the complexity of collaborative visual data

analysis in a multi-user multi-device environment, I presented an Activity-Centered approach

that identifies the network of actors that make the activity takes place in this environment:

users, tools, and task. As presented in Chapter 4, these activity actors were identified based

on the visualization reference models, and used to apply appropriate empirical methods in

terms of each aspect for analysis. I believe that these three aspects (users, tools, and tasks)

shape the complex picture of user experience in this environment. In Chapter 4, I discuss the



study and the application of the hybrid analysis approach. I synthesized an overall

understanding of the process and identified a set of observed challenges.

6

RQ2: The second important aspect is to derive an understanding of what is the char

acterization of the analysis process in this environment. After multiple passes of qual itative

coding, I found that the analysis proceeds at two levels. Within each level, I further observed

a set of exploration patterns. At the higher level, participants were taken along a set of

exploration paths, and along each analysis path, I observed a set of view-to-view exploration

patterns that occur within the larger cycles of the analysis. In Chapter 4, I present a struc

tural categorization of the analytical process in such a complex environment and discuss how

this categorization corresponds to the current structural assumptions of exploratory visual

data analysis. I also discuss research implications and touch on the potential value of

augmenting visualization tools with supportive mechanism for efficient exploration.

The presented characterization of the analysis flow revealed patterns of how participants

searched the space of data. I identified three patterns of navigating the dimensions data

space as will be discussed in Chapter 4. However, participants relied on their mental model

on navigating the data space. They were blocked form how much, and what, of the data

space they have covered. As the analysis proceeds, it was hard to keep track of prior

analyses due to many visualizations. Therefor, the exploration was oriented towards limited

dimensions’ space coverage. We need an approach that increases the awareness of the

group and individual exploration of the data search space, and that can facilitate the

exploration process. This led me to explore how to augment the design with a visualization of

dimensions search space and what are the effects on the analysis.

7



RQ3: What are the effects of visualizing the coverage of the dimensions search space on

exploratory visual data analysis? I hypothesized that explicit visualization of dimensions

search space would improve the performance of the exploratory task. In chapter 5, I

presented the design and the implementation of visualizing the dimensions search space. In

chapter 6, I evaluated the design in a between-groups study. I tested three hypotheses in the

presented study. I hypothesized that visualizing the dimensions search space will reduces the

decision cost, increases the breadth of the analysis, and increases formed questions and

observations. The results from the study supported the first and the second hypotheses. The

results showed that the visualization of the dimensions search space reduces the cost of

decision and increases the breadth of the analysis.

1.3 Research Scope

This research focuses on supporting visual data analysis in co-located settings where a

small group of collaborators work together using multiple devices to make sense of their

data. The focus on this direction was motivated by the benefits that co-located collaboration

offers in many disciplines. Co-located collaboration reduces communication barriers that

appear in other settings, as collaborators communicate directly at the same time and in the

same place. With direct interaction, collaborators can easily assess their team’s need and

adjust the team’s work. Especially in the case of using multiple devices, collaborators can

easily switch roles and change the analysis strategy without the need for the cumbersome

installation of additional instruments.
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Furthermore, the exploratory nature of visual data analysis requires social interactions for



discussion, ideation, etc. which can be handy in co-located settings.

In addition, in co-located settings, collaborators can employ multiple devices at the same

time taking advantageous of offered opportunities. As I will discuss in the next chapter, multi

device settings have great potential for collaborative visual data analysis. In this research, I

employ a workspace with a large display integrated with portable devices. Specifically, the

large display is integrated with tablets, laptops, and an AR headset (See Chapter 3 for more

details). Earlier studies on large displays have shown that their physical affordances result in

the emergence of different kinds of collaboration that have been used in many domains. The

presence of portable devices would allow for different collaboration styles. As reported by

Isenberg et al.(2011b), collaborators tend to branch from the group work which emphasizes

the importance of supporting different work styles in groupware applications (8). In this

research, I investigate the geoscience application domain. A few reasons motivated the

selection of this domain. First, geoscience domain data typically has spatial and non-spatial

features. The large scale exploration of these types of data benefits from the emergence of

solutions that go beyond a single desktop. For example, large displays offer a large-scale

exploration of spatial 2D representation, while AR headsets offer a spatial 3D representation.

In addition, the analysis of heterogeneous spatiotemporal data has been emerging recently.

1.4 Methodological Approach

Empirical study approaches have been widely adopted by visualization research for

visualiza tion evaluation, and for understanding the behavior of individuals using the

visualization tools.
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Tory (19) provided a categorization of user study methods applied to visualization research



based on their goals of conducting. She stated that user studies are performed in

visualization not only for ”evaluation” but also for ”understanding” the context of use. After

specifying the study goals, researchers should delineate their research questions and

objectives and iden tify appropriate empirical methods. This categorization helps the study

designers to articulate their goals and narrow down their choices of appropriate empirical

methods. Empirical ap proaches common in visualization research include the quantitative

experiment, the qualitative observational study, and the usability study. Qualitative methods

are widely used to answer exploratory questions using collected qualitative data. However, it

has become common to use a mixed method to offset the shortcomings of each empirical

method.

The study conducted in chapter 4 falls into the category of user studies for

”understanding”. The goal is to understand the context of use to enhance the tool design.

More specifically, my goal was to observe the collaborative process of visual data analysis to

inform the design space. Therefore, I designed the user study by paying attention to methods

appropriate for this goal of empirical studies. As I discuss in Chapter 4, I used the exploratory

user study method by applying a mixed methods employing both qualitative and quantitative

analysis. The study conducted in chapter 6 falls into the category of user studies for

”evaluation” to evaluate the context of use.

CHAPTER 2

BACKGROUND AND RELATED WORK

Parts of this chapter were previously published as: Alsaiari, A., Johnson, A., Nishi

moto, A., “PolyVis: Cross-Device Framework for Collaborative Visual Data Analy



sis”, In the Proceedings of 2019 IEEE International Conference on Systems, Man,

and Cybernetics (IEEE SMC 2019), October 6-9, 2019, Bari, Italy.

2.1 Collaborative Visualization

Collaborative visualization as defined by Isenberg et al. (20) is ”the shared use of

computer supported, (interactive,) visual representations of data by more than one person

with the com mon goal of contribution to joint information processing activities”. It lies at the

intersection of two areas, visualization and computer-supported cooperative work (CSCW).

Each of these areas has a long history of research, and specific challenges and

requirements. Therefore, col laborative visualization brings its unique challenges to the

intersection of these areas.

During the last twenty-years, many frameworks were proposed to support collaborative

visualization for small groups to internet scale users. For example, Lark (9) is a visualization

tool that support co-located collaboration for small groups around tabletops. In contrast,

Many Eyes (10) is a web-based framework proposed to support a large-scale data

visualization and asynchronous collaboration at the internet-scale.
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Hence, collaborative visualization is classified into different scenarios based on the setup

and the style of collaboration. According to the space-time matrix shown in Figure 1.1., there

are four scenarios of collaborative visualization. Each setting requires specific design

considerations and requirements.



Both synchronous and asynchronous visual analytics need special considerations due to

the unique requirements for each setting. Work partitioning across space and time in

asynchronous collaborative settings provides scalability yet introduces new challenges. Heer

and Agrawala (6) defined a set of design considerations that identify important aspects for

achieving effective collaboration in visual analytics settings. Those aspects with regards to

asynchronous collab oration are important to increase the collaboration awareness and work

engagement during asynchronous visual analytics. However, asynchronous visual analytics

is out the scope of this research, therefore, I focus here on some design principles for

co-located synchronous visual data analysis. Other efforts have been made to identify the

requirements and design consid erations for specific settings such as collaboration around

tabletops (21) and collaboration in multi-display environments (22).

Petra et al. (20) presented an overview of collaborative visualization scenarios and their

associated challenges. They pointed out that designing for each of these settings should

handle specific technical and social challenges. The technical challenges arise from the

designing and the implementation of the physical and the digital environment. It should

address and differentiate appropriate aspects of group work. The physical environment

brings addition challenges unique to the type of the environment, either a large-display,

tabletop, or multi-device environment.
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2.2 Interactive surfaces for Information Visualization

Analyzing data that comes from different sources and domain requires multiple analysts

from different background to work together in order to understand data and derive an insight.

Therefor, there has been an increased interest in developing frameworks that go beyond a



single desktop for visual data exploration and analysis. Petra et al. (23) , in their research

agenda on visualization and interactive surfaces, stated the advantages and opportunities

that multi-device environments offer for visualization. These include:

• Analysts have larger space than what one device can offer, to visualize and work on

more data.

• It allows the distribution of the data to the appropriate device for visualization. •

It allows different collaboration styles by enabling individual and group work.

2.2.1 Literature Themes

A rich body of research investigated different aspects of designing visualization tools for

multi-device environments. In the beginning of this research, I surveyed the recent research

articles about visualization tools in multi-device/interactive surfaces. After a closer look at

these publications, I found that they fell into few categories. The majority of these

publications address the development/comparison of interaction techniques for interactive

surfaces. The second research focus is the development of specific physical setups for

visualization tools or applications for specific domains. Few publications addressed aspects

of users’ collaboration around interactive surfaces.
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2.2.1.1 Interaction beyond mouse and keyboard for InfoVis

Different interaction mechanisms were proposed to facilitate exploration of visualization

on interactive surfaces. Instead of using traditional mouse and keyboards, natural and direct

interactions were used. Chegini et al. (24) presented a set of touch-based interactions for



collaborative exploration of scatter plots on large displays. It enables multiple people to

interact with visualization at the same time using different techniques for manipulation.

Figure 3: Themes of Interaction for information visualization.

Cross-device interaction examines the design and the development of interaction

techniques that leverage the combination of different devices. Due to their popularity and

portability, tablets, mobile phones and smart watches have been integrated with large

displays and tabletops to steer the interaction and the visual exploration. By leveraging each

device’s display and input
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modalities, they provide fluid interplay between them to support the visual data analysis tasks

(16). Langner et al. (25) examined interaction techniques for multiple-coordinated views on

large displays. They found that interaction from distance using mobile devices offer flexible



movements, which is essential for collaboration and perception of many visualization at the

large display.

Due to the physical nature of large displays and other devices, many approaches

considered the space in front and around interactive surfaces for interaction. An interesting

possibility for that is the use of proxemics. Jakobsen at al. (26) studies the possibility of using

body movements to drive interaction with visualizations. They developed proxemics-based

interac tion techniques as input for visualization manipulation. In their approach, they used

the spatial relations among people and visualization as an input for visualization exploration.

In VisTiles presented by Langner et al. (27), they instead used the spatial relations among

devices to steer interaction. VisTiles utilized the portability and dynamics of mobile devices to

enable flexible layout and distribution of coordinated multiple views. Therefore, it aids a

user-friendly inter face. The coordinated multiple views can adapt to the spatial arrangement

of devices enabling new visualization composition and exploration of multivariate data.

2.2.1.2 Setups development beyond a single desktop for InfoVis

Other frameworks investigated the composition of multi display environments to utilize the

capabilities of heterogeneous devices, and extend the visual space for visual data

exploration. Towards this goal, Badam et al. (11) presented the software of Munin that was

developed to unify the composition of multi device environments through a service-based

model. It envisions
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the anytime and anywhere visual data analysis. Through the service-based model, a user

can specify the physical setup, input, output, and visualization services for the assembled

devices.



Figure 4: Examples of setups beyond a single desktop for information visualization.

Other physical setups were presented in the literature for the visual exploration of multidi

mensional data. These systems investigated the opportunities that the new technologies

offer for visualization. Butscher et al. (17) and Cavallo et al. (28) presented new design

spaces for visual data analysis through the use of immersive technologies. These systems

enable an immersive collaborative analysis of multidimensional data where users can

immerse themselves into the data.

2.2.1.3 Collaboration beyond a single device for InfoVis

The last theme of work addressed aspects of users’ collaboration such as collaboration

styles, territoriality, processes, and coupling and decoupling of work. I conducted a search-
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based survey on publications that their main research focus was around collaboration. I

chose the major visualization and interactive surfaces venues such as IEEE VIS, EuroVis,



ACM CHI, ACM ITS, CoVis, and IV.

Figure 5: Studying collaboration beyond desktop environments.

Figure 6 lists the surveyed publications, their setup, and research focus. This theme of

work is the most related to the work presented in this research, although the goal of this

research is not only to understand the collaboration in multi-device environments but also to

provide tools support that enhance this collaboration. The work presented here differs from

the work presented in the literature in two aspects. First, we address the flow of the analysis

process from the dimension of analytical flow and structure with regards to the use and

formation around
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multiple devices. Second, we study this problem in a dynamic environment of multiple

devices including large display, laptop, tablets, and AR headset.



Figure 6: Publications that their main research focus is collaboration around visualization
tools and interactive surfaces.

Mahyar et al. (29) (30) studied the collaborative visual data analysis around large displays

with the focus on the record-keeping activity. They identified how and when users keep notes

and charts during the analysis. They analyzed the use and the contents of those saved

items. Then, they classified the analysis activities into five categories. The presented

framework of the analysis activities encompasses the record-keeping as a main activity that

takes place along
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with all other activities. As their work focused merely on the analysis task, this research

studies the analysis task and its structural characteristics that was shaped by the dynamic



social and digital interaction. This structural definition informs the further support of the

analysis process.

Isenberg et al. (31) performed an exploratory study to observe collaboration styles of

pairs around a single large display. They identified eight collaboration styles of team’s work

around the tabletop. These styles classified as close and loose collaboration. Their work

investigated the styles of collaboration around single device where multiple devices bring

more dynamic collaboration as we observed in this work.

McGrath et al. (15) proposed Branch-Explore-Merge protocol to support the coupled and

decoupled visual data exploration in an environment of tabletop and tablets. Portable

devices, i.e. tablets, allowed for private exploration and merging of results onto the shared

space, and hence, the branching and merging protocol facilitates flexible levels of exploration

territories. Chung et al. (18) studied the sharing and organization of information entities

across devices through gestural interaction. Their work addressed users’ collaboration

around devices and the organization of information entities while the work presented in this

research addresses the task flow from the dimension of analytical flow and structure with

respect to the use and formation around devices.

Understanding territoriality on interactive surfaces is essential for collaboration and com

munication. Some studies focused on the collaborative use of devices and territoriality on

large displays (32) and tabletops (33). Bradel et al. (32) explored how pairs of participants

used the large display during a collaborative analysis task of textual data. They observed that

the large
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space offered by the large display allowed participants to construct different spatial schemas.



Users used areas on large display to non-verbally communicate space ownership. They

created territories for private and shared use, in addition to territories for storage. This

highlights the importance of supporting the individual and group work on collaborative

interactive surfaces. Lngner et al. (25) tracked the movements pattern and interaction from

distance with the large display to understand territoriality of individual in the physical space.

The territoriality in this research requires different evaluation metrics as it is scattered across

physical and digital spaces. However, I save the investigation of physical and digital

boundaries for future work.

Wallace et al. (34) investigated different displays configurations and how each setup

affected the sensemaking and equity of participation. All three setups designed around a

single tabletop which implies different considerations for the task and social interaction.

Other aspects of collaborative visualization for multi-device were investigated. Mahyar

and Tory (35) studied the effect of linking individuals work in a virtual space using an office

setup with personal desktop computers. Related to collaboration, Mahyar et al. (36) studied

the iterative design of multi-device urban planning environment that engage a broad range of

stakeholders. Sarvghad et al. (37) presented the notion of dimension search space

visualization.

Briefly, this research differs from previous work by addressing the analysis process from

the dimension of analytical flow and structure with regards to the use and formation around

multiple devices. The resulted characterization of the analysis process informed the design of

the proposed approach of visualizing the dimension search space. The novelty of the

proposed approach is identified by two features. First, the differentiation of individual and

group search
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space. Second, the guiding of the analysis process through the realization of the analysis

paths patterns.

2.2.2 Roles of Devices

The goal of utilizing heterogeneous devices for visual data analysis is to leverage their

different capabilities and strengths during analytical activity. Here I review their potential roles

in supporting visual data analysis.

2.2.2.1 Portable Devices

Portable devices such as phones, tablets, and smartwatches are small personal devices

mostly used privately by their users. Portable devices have been adapted to serve as a

secondary dis plays for different needs. They were used as a controller for interaction in front

of large displays (25) allowing multiple users to interact with the large display form distance.

In addition, they can take the role of a private display in collaborative settings. Users can

branch from the pub lic work to due their analysis and merge finding later (15). Smartwatches

are special type of portable devices and they are in fact lightweight and wearable devices.

They are non-intrusive devices allowing users to be hands free and able to interact with other

devices. Due to their limited display capabilities, they require special considerations for

visualization design (38).

2.2.2.2 Personal Computers

Personal computers have been widely used in offices and homes. Their input capabilities

using mouse and keyboard are familiar by the majority of users. In fact, traditional

visualization tools were mainly designed for the desktop setup, supporting its input and

output capabilities. Personal computers are beneficial for personal visual exploration of data.
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2.2.2.3 Large Displays

The large space offered by large displays serves as a canvas to visualize multiple

visualizations and juxtapose them for analysis. They have been demonstrated to positively

affect the visual data exploration by providing a large ”space to think” (39). In addition, the

large space enables multiple analysts to interact with them at the same time. They serve as a

shared display that is accessible to everyone. Large displays also support natural an intuitive

interaction metaphors such as touch and speech interactions, increasing their interactivity

and support for multi user interaction.

2.2.2.4 Immersive Displays

The notion of immersive displays are more broader than Augmented Reality (AR) and Vir

tual Reality (VR) displays. For example, very large displays with large field of view qualify as

immersive displays. Nevertheless, for simplicity, here I refer by immersive displays to AR and

VR displays. Big Data characteristics required non-traditional means to support the limited

human ability to extract information and gain knowledge from the data. AR and VR are one of

promising techniques to support the challenges of big data. They are suitable for the limited

perception capabilities of the human brain. VR displays showed better exploration of data

that holds spatial dimensions. They have been used as an interactive and collaborative plat

forms for scientific visualization (40) and visual data exploration (41) moving from traditional

visualization of 3D data on 2D screens.
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2.2.3 SAGE2



SAGE2 (2), the successor of SAGE (42), is a middleware developed using web-browser

technologies to take multiple displays and unify them as one high-resolution workspace. It

enable users to collaboratively share and display their contents on the large display (Figure

2.5).

Figure 7:
User collaborating during a SAGE2 session where they share digital contents (i.e. PDFs,
images, etc.) on the large display. (2)

Display clients provide information of the corresponding viewport in the workspace via

their URLs. Any number of displays on different systems can be joined to form a unified view

of the SAGE2 workspace. SAGE2 native applications are written in JavaScript using SAGE2

API. Applications open simultaneously on the large workspace enabling users to

collaboratively interact with them. Users interact with the workspace through UI clients

running on their

23



devices using a SAGE2 pointer, which is an html element that collects the native mouse

events and propagates them to the corresponding display client for handling. Due to its

distributed application and event model, all users input events are passed to the head node

server which in turn distributes them to display clients for handling. Each display client has its

own instance of running applications and receives events to handle them consistently. In this

system, I integrate the SAGE2 large display with portable devices of different modalities like

tablets and AR headsets to create additional visual exploration territories. Coupling and

coordinating with different devices requires middle modules for data sharing, translation and

synchronization due to different platforms inter-dependency. To tackle this issue, I developed

the PolyVis framework based on declarative visualization design and operation

transformation (OT) for seamless migration of visualizations and their interactivity between

devices.

2.3 First Set of Design Principles for MDE

2.3.1 (D1) Device agnostic visualization sharing

Generally, there are two ways to develop visualizations. One is a native development for

a specific platform, and the other is a web-based development. Unlike native applications,

web-based applications can be deployed to any device using web technology. Many

frameworks and toolkits were developed based on web technology like D3 (43) and

JavaScript InfoVis Toolkit (44) to support information visualization applications. PolyChrome

(12), Vistrates (45) and Visfer (46) are all web-based frameworks developed to support the

collaborative visual analysis. However, sometimes, going natively cannot be avoided when

working with devices like AR/VR headsets. In addition, native applications are essential to



take the full advantage and
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support of the target device. Going with one way is not enough to support all applications and

user requirements. To close this gap, solutions for cross-platform infrastructures are essential

(47). Grammar-based representation of visualizations has been introduced in many works

with various levels of abstraction. They provide a mechanism to define visualization

interdependently from rendering platforms. Examples of these declarative languages include

Vega (48), Vega Lite (49), ggplot2 (50), and ggvis (51). In addition, PolyChrome (12) adapts

a centralized server to maintain concurrent web-based visualization exploration by pushing

DOM events between browsers. DOM Events are wrapped into a global space and inverted

on the target display to support different display sizes and configurations. This mechanism is

called Operation Transformation (OT) and it is originally developed to maintain concurrent

use and consistency in text editing tools (52).

2.3.2 (D2) Support of parallel and joint activities

The style of collaboration between participants is affected by the display setup, the prob

lem under investigation and the analysis metaphors. Studies showed that collaboration

around interactive surfaces for information visualization in co-located settings takes the forms

of com pletely independent, partially independent and joint (coupled) work (9)(53). Other

studies by Isenberg et al. (54)(31) identified the styles of collaboration as a spectrum that

varies from loosely coupled to tightly coupled. These findings emphasize the importance of

supporting indi vidual and group work, and efficient transitions between styles. Another

aspect that is related to the style of collaboration around interactive surfaces, is the use of

the space. Territoriality,
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which is the spatial coordination of collaborative work, also takes three forms as identified by

Scott et al. (33). Users use the space for personal work, group work and for storage. 2.3.3

(D3) Fluid cross-device interaction

Spreading visualizations and the analysis tasks to multiple devices requires intuitive cross

device interactions. Information sharing and management should not distract users from the

actual analysis. Embodied interactions (55) leverage the proximity of devices to develop in

teractions that carry out these operations. Badam and Elmqvist (46) presented a

cross-device interaction technique for data sharing in ubiquitous environments based on a

design elicitation study. The interaction technique leverages the physicality of the devices, to

effortlessly share visualizations across devices using a built-in camera and embodied QR

codes. In VisPorter (18), gestural interaction was utilized to transfer information across

displays in an intuitive and direct way. Their approach was based on the concept of physical

references of shared information, rather than using symbolic references such as IDs and

URLs.

2.3.4 (D4) Exploiting the physical space

Utilizing physical space is essential in scalable visual data analysis. Andrews et al. (39)

showed that analysts exploit the spatial affordances of large displays to serve as an external

memory and as a semantic layer for spatial data layout and organization. In collaborative

settings around tabletops, users frequently move and organize information to approach their

analysis tasks (54). Multi device ecologies enable users to carry information and form

dynamic exploration territories across displays that populate the physical space. The view



and the analysis process can be extended to span multiple exploration sites across the

physical space.
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The affordances of the physical space enable the flexible configuration and coordination of

devices to approach the task. In addition, physical space is essential to embody information

and immerse users in their data.

2.4 Modeling of Visual Data Analysis

Neumann et al. (56) presented an information visualization framework describing collabo

rative activities in information visualizations context. The presented framework is derived

from an exploratory study that was designed to understand the process of collaborative

visual data analysis around tabletop display. They contributed an evolving understanding of

this process and informing earlier models of information visualization. Brehmer and Munzner

(57) reviewed the literature on visualization tasks and derived a multi-level typology of visual

analysis tasks. The typology comprises why and how a task is performed, and what are the

input and output to complete it. It helps to express high-level tasks as sequences of low-level

tasks. Lam et al. (58) presented a framework based on a review of 20 design study papers to

describe the high-level analysis goals and how they can be achieved with low-level tasks

identified from the review. As in (57), the high level context of analysis goals helps to

interpret the low level actions.

Several studies modeled the behavior of users during exploratory visual analysis as a set

of states. Reda et al. (59) used a Markov chain to model the transition between different

cognitive and computational processes. The weighted transition between processes states

help to understand user analytical behavior and predict future interaction. Sarvghad et al.



(60) defined the analysis states during the analysis session as newly created visualization

with new set of attributes. The same definition of analysis state is used in Voyager (61) and

Voyager2
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(62). Unlike other categorization of the analysis, they defined the analysis as a navigation of

the dimension space where the analysis state changes by the change in the data dimension

space. The previous representations of the analysis as sets of states captures the complex

flow of the analysis but it doesn’t provide a full understanding of the analysis structure. Battle

and Heer (63) reviewed the literature on exploratory visual data analysis and identified a set

of assump tions regarding analysis performance, goals, and structure. After evaluating those

assumptions through analytic provenance in Tableau, they synthesized a definition of

exploratory visual data analysis contributing an understanding of it structure. We further add

to this definition by presenting a two level categorization of analysis structure synthesized

from observations of collaborative visual data analysis sessions.

CHAPTER 3

POLYVIS: DESIGNING FOR VISUAL DATA ANALYSIS IN

MULTI-DEVICE ENVIRONMENTS

Parts of this chapter were previously published as: Alsaiari, A., Johnson, A., Nishi

moto, A., “PolyVis: Cross-Device Framework for Collaborative Visual Data Analy

sis”, In the Proceedings of 2019 IEEE International Conference on Systems, Man,

and Cybernetics (IEEE SMC 2019), October 6-9, 2019, Bari, Italy.



3.1 Introduction

Visual analytics encompasses a large amount of data that comes form different sources

and domains. Therefore, collaborative visual data analysis has wide application across

domains to enable multiple users (often called analysts) to work together to collaboratively

contribute their contextual knowledge and deepen their understanding of the data. The

heterogeneity of datasets and the need for multiple analysts to work together demanded

solutions that go beyond the single desktop (64) (65). There has been a shift to big and

multi-surface interfaces for visual data analysis. Tiled wall displays have been shown to

increase the performance of visualization tasks (66) and the productivity of exploratory visual

analysis (67). In recent years, spreading to multi-device settings for co-located collaborative

visual data analysis has emerged to leverage different devices capabilities (17) (27).
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Designing multi-display interfaces that combine multiple devices for collaborative visual

data analysis faces multiple challenges. They should support key principles for effective

collab oration. First, the ability to share visualization between collaborators and devices is

important to support different collaboration styles. Collaborators should be able to share

visualization between different devices. However, cross-device visualization sharing requires

the development of flexible visual representations that can seamlessly migrate between

devices regardless of the rendering platform. In addition, cross-device collaborative systems

should allow simultaneous interaction with visualization. Cross-device simultaneous

interaction can be a grand challenge due to platforms disparity. An interaction (e.g. touch) on



a specific device should be interpreted in other synced platform to execute the same action

(e.g. click).

This chapter addresses the above mentioned challenges by introducing the design and

im plementation of a multi-device system for collaborative visual data analysis that enables

cross device visualization sharing and simultaneous interaction between devices. I integrate

SAGE2 large display with portable devices (laptop, tablets and augmented reality headset)

for co located visual data analysis. The system implements a front-end multi-display user

interface and a networked communication and coordination protocols for visualization

sharing and si multaneous interaction between clients devices. Each device plays specific

roles according to its display modality as described in section 3.2.2. Back-end protocols for

communication, sharing, interaction synchronization are described in sections 3.2.3 and

3.2.4.
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3.2 PolyVis System

Below, I discuss the primary features of the framework. I refer to the design principles

discussed in the last chapter (D1-D4) in the description of the framework and how the choice

is made to meet these principles.

3.2.1 Overview

The proposed framework is specifically designed to seamlessly support collaborative

visual data analysis that can span multiple devices of different modalities. The framework is

built on top of SAGE2 middleware that drives tiled wall displays and unifies them as one



high-resolution display. PolyVis integrates portable devices with SAGE2 display to compose

a heterogeneous visual data analysis environment enhanced with further exploration

capabilities.

Earlier studies of collaborative visualization emphasized on the importance of supporting

individual and group work for different collaboration styles. While the large display is a pri

mary display, tablets enable different exploration styles. They allow users to branch from the

main analysis to conduct a local exploration or to conduct a coupled exploration with other

collaborators (D2). PolyVis users can join the analysis session using their tablets or phones

to pull and push visualizations from the large display and do further analysis activities as will

be described below.

The integration of AR/VR devices enables a different display modality. However, PolyVis

only support the HoloLens AR headset for 3D immersive visualization. This choice can be

justified by the fact that VR display modality requires additional considerations to be

integrated
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effectively. Unlike VR, AR headsets can enable collaborators to exploit the physical space as

an additional exploration territory without blocking them from their surrounding environment.

The system is a server/client based system where SAGE2 server handles the

communication with and between several clients applications for the laptop, tablet, SAGE2

app, and HoloLens. Figure 8 shows an overview of each device capabilities. Users can

iteratively filter data, specify the visual encoding, and create visualization. They can pull/push

visualizations and change their visual representations using portable devices.

As users can pull/push visualization, they also can sync interaction on a view between



the wall and the tablet displays. Any changes are made on the tablet will update the synced

view on the wall and vise versa. The simultaneous interaction approach is described in 3.2.3.

To share visualizations between devices (pull/push), PolyVis adapts the visualization

declarative design as described in section 3.2.4.

Developing visualizations can be a tedious process for users with no programming skills,

such as data analysts. Therefore, visualization authoring systems and toolkits have been

widely adapted in recent years. The presented framework enables the rapid construction of

visualiza tions by a visualization authoring UI following the flow of the information

visualization reference model (68) in which users filter the data, specify the visual encoding,

and create the visualiza tion. Here, users play a major role in the visual mapping task that

maps each data attribute onto a single visual channel.

As will be described in the next chapters, groups of three participants used the system to

perform exploratory visual data analysis of geoscience data sets.
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Figure 8: An overview of each device capabilities.

3.2.2 Physical Environment

Different devices like smart-watches, phones, tablets, laptops, large displays, AR and VR

headsets became common display metaphors for information visualization. Some of these de

vices like smart-watches and VR headset require unique design considerations due to their

field of regard either a very small or a very big. Therefore, I limited my scope to support the

integra tion of portable devices that vary in between like tablets and the HoloLens AR

headsets. Any number of mobile devices with a built-in camera and web browsers (i.e.

tablets and phones) can be joined to pull and push visualizations from and to other devices

(D3). The HoloLens client device extends the exploration into the third space. Each distinct

HoloLens client should run
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on a separate machine. While theoretically the system can support a larger number of

devices clients, I used one laptop, two tablets and one HoloLens in the conducted studies.



Figure 9: Visualization reference model (3).

3.2.3 Cross-device Visualization Coordination Approach

PolyVis can enable coupled exploration style by coordinating views between two devices

(D2). That is, users can link a local view on the tablet with a global version on the wall and

interact with them simultaneously. To allow coupled exploration styles between devices, the

views on both devices should be synchronized. When it is needed to maintain visualization

co ordination, the system should synchronizes visualization state between client devices,

regardless of rendering platform, to ensure that collaborators see the same data.
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In this section, I discuss the choice of the selected coordination approach. To understand

how to support cross-device visualization synchronization, we need to analyze the structure

of visualization applications in order to specify the possible places for synchronization in



different platforms.

According to the visualization reference model (Figure 9) , the ”view transformation” con

verts the ”visual structure” into a ”view”. To maintain the same view across all clients, one

possible way is to synchronize the view itself. However, it is difficult to sync the view itself

(and its rendering components like SVGs) due to different rendering environments across

platforms.

Another way to coordinate views across all clients is through interactions. As shown in

Figure 9, the user can control the parameters of the views through interactions. User

interaction with the view triggers an action (program logic) that updates the view. Therefore,

interactions will trigger the view transformation cycle that updates the view. So any

interaction triggers an action that updates the visualization should be triggered in all

coordinated views. Synchronizing interaction is more generic than synchronizing the view

itself.

Nonetheless, synchronizing interaction is not straightforward. Low-level interaction events

can be variant in different platforms. Click event for example corresponds to pinch event in

HoloLens. While they differ in their representation, they posses a similar activity semantic.

Gotz and Zhou (69) characterized user’s visual analytic interactions into a multi-tier activity

model based on their semantic richness. The bottom tier of their 4-level model is the

low-level interaction events which have little meaning without context such as click,

mousemove, etc. The second tier is the actions tier. Actions are meaningful units that can be

achieved by one
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or more low-level events such as brush, filter, inspect, etc. While they posses a richer



semantic than low-level events, they are generic in visualization tools (69).

3.2.3.1 Interaction Synchronization

The interaction synchronization approach presented in this chapter is based on the

actions tier. All interactions are wrapped into predefined rich semantic visualization actions

and shared with peer clients for synchronization. The interaction synchronization API

interprets and exe cutes (triggers) the action in the target device for coordination.

The representation of rich semantic action captures its properties and parameters. Similar

to (69), a rich semantic actions are defined as:

Action =< Id, Type, Parameters[value, valueType, deviceId, timestamp] >

Where the type represent the type of the action and the parameters hold the values to

execute this action.

Similar to PolyChrome (12), the server is used to maintain the global state between all

clients. Low-level events are wrapped into a global space (actions) and inverted on the target

display. The framework encapsulates coarser interaction operations instead of low-level

events, so they can be shared and inverted by the target device. There are four types of

actions that are supported for synchronized interaction. These are inspect

(details-on-demand’ for a visual object), brush ( highlighting a subset of visual objects), pan

(scrolling a visualization), and zoom (scaling a visualization). Although the tablet client is

written in JavaScript similar to
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SAGE2 applications, the coordination layer is necessary due to the difference in interactivity



handling between SAGE2 applications and other JavaScript-based applications. 3.2.3.2

Visualization Persist State

The second challenge that PolyVis addresses is sharing visualization between devices as

will be described in the next sub-section. However, it is especially important in collaborative

settings to share visualizations in their current state. Therefor, PolyVis maintains visualization

state after interaction.

Figure 10:
An example of a visualization scheme structure. (a) visualization at initial state. A new
visualization state is pushed to the scheme after an exploration event occurred in (b).
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Most visualization frameworks lack the ability to capture the visual exploration state and

the path that led to it. The most challenging aspect is how to capture the visualization state.

From the visualization task perspective, interactions in visualization can include a set of low



level events, such as brushing interaction which is composed of the events: mouse-down,

mouse move and mouse up. Do we consider the visualization state after each low-level

event or after a richer semantic interaction that is composed of a set of low- level events?

Figure 11: The visualization declaration scheme can span different devices for rendering: (a)
large display, (b) tablet, and (c) HoloLens.

The state definition needs to be identified first before any effort to capture it is made. As

discussed in the last section, I define operations as interaction-centric operations. To en able

consistency between different platforms, I chose to define the visualization state based on

semantic rich interactions. I enable client side maintenance of a persist state. The state is

recorded as the user interacts with the visualization. I defined an intermediate layer to record

and push the state to the visualization scheme. When the visualization is shared, the state is

recovered according to the device-dependent interactivity and visual channels encoding.
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3.2.4 Visualization Sharing

As I discussed in the previous chapter, visualization development can be either native to

a specific platform like AR/VR headsets or it is web-based application that can be deployed



to any device using web technology. Grammar-based representation of visualizations (i.e

Vega Lite(49) ) has been introduced in many works with various levels of abstraction. They

provide a mechanism to define visualization interdependently from rendering platforms. For

visualization sharing between different devices, I treat visualizations as user-configurable

semantic units (D1). I use a grammar-based representation of visualization to represent the

visualization semantic.

Figure 12: An overview of the system components. A visualization scheme is defined by the
user through a set of filtering and visual encoding specifications. The server coordinate the
spanning of the scheme to the target device and coordinate the event wrapping and sharing
between devices.
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Unlike other grammar-based applications, I assume a dynamic visualization scheme that

gets updated with user interactivity with the visualization. I employ an all-in-one JSON format

to declare three main components of the visualization in our framework.

These components are: query specification for data retrieval, visual encoding channels,



and interactivity state. I capture those components during user composition of visualization.

The interactivity state is captured automatically using our persist state mechanism and

update the scheme accordingly. Figure 10 shows an example structure of these components.

Decoupling the visualization semantic from its view transformation process enabled a

seamless migration of visualizations across devices (D1).

Using this approach of declarative visualization design, visualization can be shared

between devices regardless of the rendering platform. To share a visualization, the

application shares the visualization scheme with peer client. The view transformation is

delegated to the target device for rendering (Figure 11).

3.3 Evaluation

To evaluate the use of the prototype system for the visual data analysis of real world

datasets, I conducted a collaborative session with two visualization researchers. Here, I

outline the data analysis scenario and discuss feedback from experts.

3.3.1 Collaborative Scenario

Two researchers with a background in visualization, one has additional experience using

immersive technologies, conducted a visual data analysis of two geosciences datasets. For

ref erence, I will refer to the users as U1 and U2. The users performed a visual analysis task
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to ascertain the relationship between injection volume, the pressure of fracking wells and the

frequency of earthquakes in Oklahoma State. The first dataset contained information about

earthquake incidents in Oklahoma and California from the years 2000 to 2010 (Appendix C).

The Wells dataset contained information about the fracking activities in Oklahoma and Califor



nia also from the years 2000 to 2010 (Appendix C). The earthquake dataset consisted of

24555 records and 12 attributes while the Wells dataset consisted of 5138 records and 9

attributes. These datasets have attributes with similar meaning such as the location, the time,

and the depth. The earthquake dataset was provided courtesy of http://service.iris.edu/ and

the Wells injection dataset was provided courtesy of http://www.occeweb.com/.

The users started with the question: Is there any correlation between the injection volume

of wells and earthquake events? U1 began by mining the data for all earthquake events

during 2010 and then he visualized them on a large display map. He also created a map of

the locations of active well during 2010. U2 captured the barcode attached to the map of

earthquakes by using the camera of the handheld device to pull the map visualization and

performed analysis of the mapped data. He created a line chart to plot the frequency of

earthquake events over the year and pushed the chart to the wall. They observed an

increase in the number of earthquake incidents during the month of December.

To investigate the temporal relationship with injection volume, he moved to the map of

wells and captured the attached barcode. Then, he created another line chart of total volume

injection per month. A pattern is observed, so he pushed the chart to the wall and started to

discuss with U1. They observed an increase of volume injection during the month of

November, which
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Figure 13: In a collaborative session, the user on the left is examining data in 3D using a
HoloLens device. Data points (Wells) within the blue rectangle on the left map are viewed in
3D via HoloLens. The other user on the right is using a tablet (with linked visualization) to
inspect specific areas on the right map.

has no temporal relation with the increase in earthquake events, but they made a hypothesis:

can a high volume injection cause an increase in earthquake frequency for the next month?

U2 used the HoloLens to examine the relative depth of the wells compared to the depth of

the earthquakes. They concluded that an additional investigation of the observed pattern is

needed for different years and probably for different states to test their hypothesis.

3.3.2 Expert Feedback

I collected feedback from the experts regarding the usage of the system for visual data

analysis and the benefits of integrating different devices into the process of visual data

analysis. U1 mentioned that the use of the tablet gave more freedom of movement, obtain

the data they want, process it and push it back. He also believes that this will allow different

people to focus
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on different things of the analysis process. Because of the affordance of portability, both

users mentioned that it would be beneficial to use the portable devices as a controlling

metaphor to control visualization on other devices (i.e. tablet to control a visualization on

large display or on the HoloLens). Controlling here is different than coordinating or linking

visualizations. In this context, it means moving visuals around, minimize or maximize them,

etc. U2 mentioned that it is useful to view datasets in 2D on the large wall and in 3D on the

HoloLens, but the hardest part is to determine what the HoloLens user is seeing. As U1 used

the HoloLens to view the data in 3D, he added that it also needs a kind of representation on

the large display or any mechanism that would increase the awareness. Experts gave good

feedback on how the devices are complementary to each other.

3.4 Conclusion

In this chapter, I presented the PolyVis framework for the building and promoting of visual

izations in multi device environments. It supports visual data exploration by utilizing multiple

devices of different modalities. The primary goal was to maintain consistent sharing and inter

action with visualizations across different platforms. To achieve this, I relied on the

declarative visualization design and the operation transformation paradigms. I treat

visualizations as se mantic units (in the form of grammar) to migrate to and render by

different devices. SAGE2 users assume a major role in the composition of visualization

grammar without any need for programming skills. The interactivity with the visualization is

captured and stored in a global space for consistent representation. Therefore, the state of

the visualization will be maintained as the data analysis proceeds regardless of the

processing device. There are a few areas that
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I plan to improve in the future. First, the visualization layers at each device only support few

visualization types. I plan to extend that to support more advanced types of visualization

such as multi lines, stacked bars, parallel coordinate, node-link, etc. I plan also to support the

3D version of these types on the HoloLens client. In addition, as suggested by experts, I

would like to implement a mechanism for cross-device multi-coordinated views. With multiple

visualizations at a time, it would be beneficial for the visual exploration to connect data points

across scattered views.

CHAPTER 4

UNDERSTANDING COLLABORATIVE VISUAL DATA ANALYSIS IN

MULTI-DEVICE ENVIRONMENTS

Parts of this chapter were previously published as: Alsaiari, A., Johnson, A., Nishi

moto, A., “PolyVis: Cross-Device Framework for Collaborative Visual Data Analy

sis”, In the Proceedings of 2019 IEEE International Conference on Systems, Man,

and Cybernetics (IEEE SMC 2019), October 6-9, 2019, Bari, Italy. AND as: Al

saiari, A. and Johnson, A. (2019). “Towards Understanding Collaborative Visual

Data Analysis in Multi- Device Environments”. In 2019 IEEE VIS.

4.1 Introduction

The work of this chapter addresses the questions: what is the complex picture of users’

experience during a collaborative visual data analysis in a multi-user multi-device

environment? and what is the characterization of the analysis process?



Collaborative visual data analysis is a complex process. There are several factors add to this

complexity. As I discussed in Chapter 2, users and tools influence one another in

system-user interaction. Therefore, the complexity of the analysis process is not influenced

only by the respective task, but also by users and tools. The goal of this chapter is to

understand this process based on involved factors, and identify challenges that shed light on

requirements to improve the design. To achieve this goal, I conducted an exploratory study to

observe how 44
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users approach the analysis task in a multi-device environment, and how this differs from one

display settings. In the first phase of the study analysis, I decomposed the problem into three

dimensions. I performed a hybrid analysis approach with mixed methods to analyze these

dimensions. Specifically, I analyzed the usage of the tools, the analytical activities, and the

strategies of collaboration around devices. In the second phase of the analysis, I performed

an in-depth qualitative analysis and provided a structural categorization of the visual data

analysis process. This categorization was influenced, on abstract level, by the three

dimensions of the analysis environment. The findings and observed challenges highlighted

the importance of a supportive tool that unites the scattered effort. I envision this through a

hybrid model of a visualization recommendation tool that cast the analysis process as an

assignment problem based on the different aspects of the environment: the tasks, the tools,

and the users. This motivated the future work of this research. In Chapter 5, I provided a set

of design guidelines to enhance visualization tools with recommendation system that steer

the analysis process in flexible and efficient way. In Chapter 5, I discussed the current

designs of visualization recommendation systems and their building metrics. In contrast to



previous work, my proposed model frames its recommendation metrics based on the different

aspects of the environment. The design, implementation, and evaluation of this model is the

core of the next phase of this research and will be investigated in more detail.

4.2 Exploratory Study

The study presented in this chapter falls into the category of user studies for ”understand

ing”. The goal of this type of user studies is to build a rich understanding of user experience
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and context of use by observing the user-system interaction. Then, this understanding can

help informing the design space of such systems. Within a multi-device environment,

collaborators employ different tools to perform different kinds of activities in approaching the

respective task. The main question is: what are the flow patterns that collaborators follow in

approaching the task? I believe that the flow of the data analysis is shaped by the following

sub-questions: How do users use the tools? What types of activities do they perform? And

how do they collab orate? Each question corresponds to one aspect: tools, tasks, and users.

I aim to synthesize the flow patterns of the analysis process by quantitatively and qualitatively

analyzing the three aspects. Subsequently, I target the categorization of how the analysis

process unfolds. Through this analysis, I can define further requirements on how to provide

tool support for collaborative use and coordination of analytical components. This chapter

contributes a better understand ing of the visual data analysis process and provides the

directions for further development of information visualization tools around interactive

surfaces.

4.2.1 Participants



I recruited 18 subjects, 6 groups of 3, from a pool of undergraduate and graduate

students at the electronic visualization laboratory and computer science department of the

University of Illinois at Chicago. Participants comprised of 13 male and 5 female students

between ages of 18 and 34. They participated in the study for the duration of 45min-1.5hrs.

Participants had varied experience in visual data analysis, ranging from moderate to

advanced. EVL affiliated students had advanced background in visualization while

participants who were not affiliated with EVL, had taken at least one EVL course and had

moderate experience with visualization.
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4.2.2 Software

For these studies, I used a cross-device framework that I developed for collaborative

visual data analysis, PolyVis (70). In PolyVis, I integrated SAGE2 (2), a large display

collaborative application, with portable devices for co-located, multi-device visual data

analysis. Portable displays can vary from smartwatches to the fully immersive VR headsets.

Due to the unique requirements of integrating devices from these categories for information

visualization, I limited my scope to support the integration of portable devices like tablets,

laptops, and HoloLens AR headsets. Specifically, PolyVis integrates SAGE2 large display

with laptops, tablets and the HoloLens AR headset. It provides users with an environment for

visualization compositions and sharing across displays. PolyVis also offers the capability to

utilize each device for specific tasks. Some of these tasks include data filtering, visual

mapping, visual representation, visualization construction and sharing. This environment

allowed analysis across different devices and many visualizations with the ability to move



and share them.

PolyVis usage scenario: Using a laptop or a tablet, users can start by mining the data for

all earthquake events during 2010, and then specify their visual representation (i.e. map) to

visualize them on the large display. Any user with a tablet can capture the barcode attached

to the map of earthquakes using the camera of the device to pull the map visualization to the

portable device. Analysis charts like scatterplots, line or bar charts can be created for the

pulled map for analysis and then they can be pushed back to the wall. Using the laptop, the

user can select a specific area on the map to view data points in 3D using HoloLens. PolyVis

was developed based on a declarative visualization design like Vega-lite (49) and the

paradigm of
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operation transformation for seamless migration of visualizations and their interactivity

between devices.

4.2.3 Datasets and Tasks

Each group performed visual analysis tasks using two geoscience datasets. The first

dataset contained information about earthquake incidents in Oklahoma and California from

the years 2000 to 2010. The Wells dataset contained information about the fracking activities

in Ok lahoma and California also from the years 2000 to 2010. I collected, cleaned,

preprocessed and stored datasets in NoSQL database using MongoDB. The earthquake

dataset was pro vided courtesy of http://service.iris.edu/ and the Wells injection dataset was

provided courtesy of http://www.occeweb.com/. The earthquake dataset consisted of 24555

records and 12 at tributes while the Wells dataset consisted of 5138 records and 9 attributes.

These datasets have attributes with similar meaning such as the location, the time, and the



depth. Earthquakes dataset has other attributes like magnitude while Wells dataset has other

attributes like well status, well type, injection volume, and injection pressure. Tasks were

designed to ascertain the relationship between injection volumes, the pressure of fracking

wells and the frequency of earthquakes in Oklahoma and California states.

Each group completed two tasks, with focused and open questions. In the first task, the

subjects were given focus questions that can be answered by creating one or two

visualizations. The focus question is designed in a way that helps subjects learn how to use

the system and be familiar with the datasets. For example, “how does the injection volume

on Oklahoma compare to California in 2010?” Subjects were then asked an open exploratory

question to determine
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the correlation between earthquake events and wells’ volume injection of two states,

California and Oklahoma, from the years 2000 to 2010. They were asked to create as many

visualizations as they needed with no restrictions regarding using devices or moving in the

space. 4.2.4 Setup and Data Capture

The study was conducted in a room space of approximately 10.61 by 5.59 meters,

equipped with a high-resolution large display. Overall display size is approximately 7.3 by

2.05 meters at a resolution of 11,520 by 3,240 pixels. Other portable devices were placed on

a table in the middle for use during the study: one MacBook Pro (macOS Sierra, 2.4 GHz

Intel Core i5), one 8” Samsung - Galaxy Tab A (32GB, Android 9 (Pie)), one 10” Samsung -

Galaxy Tab A (64GB, Android 9 (Pie)), and one Microsoft HoloLens 1 (Windows Mixed

Reality OS, Intel 32-bit (1GHz) CPU, 2 GB RAM). There were no chairs provided in the

working area as shown in Figure 14. Each of the portable devices was attached with Mocap



markers for tracking. In addition, three caps with attached Mocap markers were provided to

the users.

The whole room was tracked using the OptiTrack Mocap system. The position and ori

entation of devices and users were streamed from the OptiTrack Mocap system to a Unity

application depicting a 3D model of the physical space. We sampled the captured data at a

rate of one frame per second. The unity application was running on a separate machine in

the corner of the room. Systems usage logs were collected from all deployed devices. I wrote

a script to capture all interaction events with the system. Each log included the device id and

type, the action type, and the timestamp. System logs will be used in my quantitative analysis

of the device usage. The study was video and audio recorded using two cameras, one

showing
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Figure 14: Illustration of the study setup.



the full room from behind and one showing the subjects’ interaction with the large display

from the front. The setup is pictured in Figure 14.

4.2.5 Procedure

First, participants were greeted and provided with consent and media forms. Then, they

spent 2-5 minutes to read and fill out forms. Once participants finished completing forms, I

started with a 5-minute introduction to give the users an overview of the software and tools.

Next, participants were given the first task of multiple focus questions that could be solved by

creating one or two visualizations to familiarize them with the software and tools. I opted for

this approach as a practical tutorial on how to use the system. They were told to feel free to

ask for a clarification or instruction at any time during this task. They spent 20-30 minutes on

this task. Next, they started the main task of an open exploratory question to find the

correlation

51

Figure 15: Subjects examining a set of created visualizations while using different devices.
Position and orientation of subjects and devices are streamed from OptiTrack Mocap system
to a Unity application depicting a 3D model of the physical space.



between earthquake events and well’s volume injection in two states, Oklahoma and

California. Participants were told to work on the task in any way they preferred and to create

as many visualizations as they wanted. I left it to the participants to find their own way for

completing the task. This task was exploratory in nature and took between 25 to 70 minutes

to complete. Upon completing the main task, participants spent 2-5 minutes to fill out surveys

about their experience in the study.

4.2.6 Coding and Data Analysis

I collected data in the form of recorded videos, system logs, tracking data, and question

naires. About 420 minutes of videos were collected (an average of 70 minutes per session,

41 minutes for the main task). I divided the analysis into two parts and in each part I

performed multiple coding passes. In the first part, I focused on analyzing tools usage,

analytical activ-
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ities, and user collaboration styles around devices while in the second part the focus was on

the flow of the analysis process. The main goal of this study is to identify how we can provide

supporting tools to facilitate the collaborative analysis process; therefore, it is crucial to under

stand how the analysis flowed. In addition, revealing aspects of the tools usage, the

performed activities, and the users’ collaboration styles shed light on requirements that

should be taken into consideration when designing a tool.

For the first part of the analysis, I created an excel sheet with 5-second intervals. For



each time interval, I coded from the videos the users’ formation styles around devices, the

tools used, and the type of use. Then, each formation style of user collaboration was

classified as close, moderate, or loos. By this, I created 5-second interval logs of the

collaboration styles, the tools usage, and performed activities. I converted these log files into

timeline visualizations as shown in Figure 17 and Figure 18.

I started coding the analysis flow by creating a second excel sheet and then for every

created visualization, I documented how it was created, its relation to previous visualizations,

and why it was created. Then, I drew a flow diagram of the created visualizations in

chronological order with arrows indicating the first set of visualization relationship codes.

After multiple coding passes, I identified a categorization of the analysis flow as will be

discussed below.

4.3 Findings

In this section, I present findings from the two major analyses conducted on the collected

data. In the first part, I present results from analyzing three aspects of the analysis sessions

to
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provide an understanding of users’ activities and collaboration. In the second part, I present a

categorization of analysis strategies observed in the study.

4.3.1 Understanding User Activity: A Hybrid Approach

Previous work examined three factors (users, tools, and tasks) independently. In this

study, I focus on the synthesis of these factors. To do this, I adopted a hybrid analysis

approach that focused on three different aspects: users, tools, and tasks. We believe these



findings will help us identify associated challenges and better inform design goals in

developing multi-device tools for visual data analysis.

In their book ”Acting with technology” (71), Kaptelinin and Nardi discussed the develop

ment of Activity Theory as an approach and theoretical foundation for research in the fields of

HCI and CSCW. They discussed its use in ”interaction design” to understanding the hu man

interaction with technology and using this understanding to better design technological

systems. Interaction design was defined by Winograd (72) as ”the design of spaces for

human communication and interaction”.

They ultimately framed the contribution of activity theory to HCI field as: ”Activity theory

provides a coordinated description of the use of technology at several hierarchical levels at

the same time, and thus opens up a possibility to combine, or at least coordinate, analyses of

different aspects of the use of technology, such as physical interaction, conceptual

interaction, and social “contextual” interaction”. The adapted approach presented in this

paper was mainly motivated by their framing of activity theory in HCI field.
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Figure 16: The traditional reference model for InfoVis (above) is redefined for multi-user multi
device environments (below). The activity-centered approach maps this definition into activity
actors: tasks, users, and tools. For each actor, we apply appropriate empirical methods to
present a structural analysis of group’s activity in this complex environment.

The ”activity system” triangle proposed by Engestrom (73) is one of the main model that

was developed based on the concept of activity theory. It has been considered by several

researchers as a theoretical framework for the analysis and evaluation of system-user

interaction. This model describes actions through six elements: the objective of the activities,

subject engaged in the activities, social context, tools or the artifacts, division of labor or

roles, rules or guidelines regulating activities. Therefore, Kaptelinin and Nardi argued that the

most leverage from this model are complex systems with multiple subjects and objects, as

the focus here
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changes from single user-system interaction into collaborative uses of technology with mixed

virtual and physical settings and set of activities. The activity system model has been applied

to many HCI research to inform the design and analysis of technologically mediated

activities. We framed an approach in terms of the components of this framework that

facilitates the selection and application of appropriate analysis methods.

As defined by the activity system, the activity relies on network of actors to make it

possible. Actors are the people, tools, rules, social context, etc, that interact to make the

activity hap pens. Therefore, we need to define the network of actors. As shown in Figure 16

(above), the traditional visualization reference model illustrates the iterative process of the

visual analysis task. Badam (74) redefined this model (Figure 16 , below) for multi-user

multi-device environ ments where multiple users utilize multiple devices to perform the

iterative process of visual data analysis. This new definition included two additional actors to

the earlier definition: group of users and set of devices. So beside the process of the analysis

task, users and devices com pose the network of actors that make the activity takes place in

this environment. These three working actors map onto the top components of the activity

system triangle. The approach uses these dimensions to apply appropriate empirical

methods within each one. Therefore, this structural analysis provides an overall

understanding of group’s activity in complex visual analytics environments.

4.3.1.1 Tools Usage

Each device has specific capabilities to serve users in the analysis course. We were

interested in capturing the usage frequency of each device and how they contributed to the

analysis flow.
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Some devices like large displays naturally offer a public usage to multiple users at the same

time while tablets and laptops tend to be privately used. However, participants were not

restricted to use devices in specific ways. Rather, I left it to the users to decide how and

when to use the tools. I aimed to capture the dynamic of using devices in parallel, in

conjunction, etc. and the patterns of how users utilized them. As shown in Figure 17, I coded

the use of devices from videos and system logs at 5-second intervals. I considered a device

as under use if one or more participants are interacting with it. That includes direct interaction

using touch, click, etc., or indirect interaction like looking at and discussing information. The

view exploration task as discussed below encompasses a direct and indirect interaction with

devices. In the next subsections, I discuss the types of activities and the styles of user

formations around a device. A complete list of tools usage timelines for all trials is presented

in Appendix A.

Utilization of devices affordances. Participants used the large display to share and

arrange the many visualizations they created through the analysis session. This came

naturally from the bigger area offered by the large display. Although users were able to create

many visu alizations privately on portable devices, they shared publicly what they thought

was important to their analysis.

The large space was also used to lay out visualizations. The layout was important to

indicate implicit relationships between visualizations. As I discuss in the next section,

participants were taken different analysis paths and in some cases layout was used to

differentiate paths. Tablets along with the large display offered different analysis styles as

suggested by (15). This was important to allow participants to try different analyses on their



own and then share with
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Figure 17: Logging of tools usage during the analysis session. The large display was the
most used device.

Figure 18: In session 2, participants loosely collaborated by engaging in individual analyses
using tablets. See Figure 24.

others. Unlike stationary devices like laptops, tablets also offered some mobility to users by

enabling them to move within the space while working on their analysis. In three out of six

sessions, participants used the Hololens to compare the depth of wells and earthquakes in

3D. The 3D view offered a quick comparison of depth. In the other three sessions,

participants used 2D charts to find a depth relationship, which required them to create many

visualizations.



Frequency of use. In five out of six sessions, the large display was the most used device.

This can be explained by the fact that users use the large display as a public canvas to plot
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and arrange all created visualizations and conduct their discussion and analysis around it. In

addition, the large display offers a better space for collaboration than other devices, which

align with the current assumptions in the literature (75). In an exceptional session, users

used tablets most of their time analyzing visualizations individually, which led to loose

collaboration for around 34% of their analysis time. This highlights the importance of

supporting communication and work coordination in these systems to enhance collaboration.

We need to develop guidelines to better design visualization tools that can utilize the

affordances of multiple devices and overcome the communication and coordination

challenges.

Joint and parallel use. I observed a frequent presence of coupling styles between

devices. In the case of coupling, participants mostly used a large display along with one or

two portable devices. While the large display served as a canvas to place visualizations,

other devices were used to further analyze these visualizations. Participants were engaged

in cycles of creating visualizations and analyzing them (i.e. filter, change representation,

aggregate data). Although participants had two tablets, in most sessions they used one of

them more than the other one. There were some cases where participants divided tasks and

worked on both in parallel. Here, I stress on the importance of a guidance mechanism that

can help users to better utilize devices of same capabilities to divide work.

4.3.1.2 Analysis Activities



In this section, I report the common high-level activities I observed among all groups.

First, I coded all analytical processes performed by users; then, I classified them into four

high-level
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TABLE I: Percentage of time spent in using each device.

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Avg.

Task time 43 min 42 min 66 min 28 min 22 min 48 min 42 min

Large display 55% 29% 41% 37% 34% 60% 44%

Laptop 9% 11% 19% 15% 15% 11% 13%

tablet A 35% 47% 12% 18% 14% 47% 29%

tablet B 0% 51% 4% 28% 15% 13% 17%

HoloLens 24% 1% 23% 11% 0% 13% 14%

Figure 19: Average percent of time spent in using each device.

activities as shown in Table II. These high-level activities are: creating new views, exploring



views, manipulating views, and analyzing views. Table II shows all the micro processes

under each of these high-level categories. This categorization has similarity to some visual

analysis processes described in (76) (54) which suggests that micro processes within the

characterization can occur in settings outside the context of this study. Previous works (76)

(54) characterized
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users’ activities from the perspective of the visual analysis task. In the case of multi-device

settings, the affordances of the devices influence the analytical task activities. For example,

changing a visual representation into an immersive view is a cross-device analytical activity.

Therefore, the characterization of groups’ activities is based on our focus on the problem

from the different dimensions of the environment. I coded these activities from video

recordings and system logs. In this categorization, I focused on “actionable processes”.

Actionable processes are the type of processes when users directly or indirectly interact with

analytical components (visualizations, filters, data subset, etc.) using one or more digital

media (devices). In addition to actionable processes, I identified two other non-actionable

processes: discuss observations and form hypothesis.

Creating new view. This activity comprises processes such as browsing data attributes,

applying filters to datasets, and mapping attributes to visual channels. As the goal of these

processes is to produce a new visualization, I identified them as an activity of creating a new

view. The final product of these processes is a new visualization that is not derived from an

existing one. I classified deriving visualization from an existing one as an activity of analyzing

a view. Created new visualizations have no direct ancestors but they mostly have implicit

relationships with other views along the historical paths of the analysis. I will discuss the



explicit and implicit relationships of views in a later section.
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TABLE II: The four activities I observed in the study. Micro processes are performed for the
goal of the corresponding high-level activity

Exploring views. The exploring views activity captures all the processes where partici

pants aim to derive information individually or collaboratively from visualizations. I noticed

participants most of the time share private visualizations on the public wall display to explore

information with others. In other cases, participants share their portable devices with others

to explore visualizations. Participants explore by reading the information about the

visualizations. This process is usually followed by a discussion or forming a hypothesis

activity. Participants also interact directly or indirectly with visualizations to explore

information. Direct interactions are the direct zooming, navigation, selection, etc., on the

visualization while indirect interaction
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is through another device (i.e. tablet to wall, wall to HoloLens) or merely through the looking

at and discussing information.

Manipulating views. I noticed a few processes where participants arrange views on the

large display for different purposes. In some cases, participants position views in specific

layouts for comparison. In other cases, they resize and position views to create clusters of

views.

Analyzing views. Through their analysis, participants derived many views from existing

ones. The goal is to render a further analysis of the current subset of data. Further analyzing

the view comprises the changing of the visual representation. For example, changing a 2d

map into a 3d representation, or into a scatter plot to correlate the distribution of specific

attributes. Analyzing view activity also comprises the aggregation of data points using an

aggregation functions.

Non-actionable activities. There were some activities where participants do not directly

interact with the system. I identified those activities as common non-actionable. Under this

definition, I considered when participants discuss observations they found and formulate hy

potheses.

Non-linear Temporal Order . I noticed that these activities have no linear temporal order

as participants switched between them frequently. To reveal unseen patterns and temporal

relationships, I coded the time interval of each activity for all groups. These activities can

temporally overlap when performed simultaneously by multiple users. Therefor, I charted

each activity in a separate timeline as shown in Figure 20 and Figure 21.
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Figure 20: Logging of activities during the analysis session.

Figure 21: Logging of activities during the analysis session.

Figure 20 and Figure 21 show timeline visualizations of performed activities during two

sessions. A complete list of timeline visualizations for all trials is presented in Appendix A.

The Analysis Outcome. The task was exploratory in nature to infer any correlation

between the provided datasets. There were no correct or wrong answer. In all sessions,

partici pants came to one or two observations. They wrote down those observations, mostly

at the end, on the task paper that was given. I didn’t observe that they wrote down any other

information during the analysis either regarding what dimension space they are working on or



other related
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TABLE III: Percentage of time spent in performing each activity.

Session 1 2 3 4 5 6 Avg.

Task time 43 min 42 min 66 min 28 min 22 min 48 min 42 min

creating new vis 17% 21% 19% 15% 25% 8% 17%

exploring views 67% 24% 58% 34% 21% 66% 49%

manipulating views 4% 6% 4% 19% 9% 7% 7%

analyzing views 26% 56% 12% 23% 14% 43% 30%

Figure 22: Average percent of time spent in performing each activity.

information. In most sessions, participants started with a dimension space of the data

specified by time, location, depth, etc., and then they went broader or deeper in the

exploration. At this time, I saved the analysis of the dimension space coverage to be



investigated in the future work. Analyzing how they explored the dimension space helps in

designing recommendations.
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4.3.1.3 Collaboration Styles

Unlike the case of a single display, the presence of multiple devices arises the question of

how closely or loosely participants have worked. This also requires us to redefine the close

and loose coupling of work. Petra et. al. (31) discussed the close coupling around tabletop

display. Several aspects were used to define the range of close to loose coupling. From the

most to the least influencing factor, these were the engagement in the discussion, the

working on the same information, and the working on the same view.

Having multiple devices to complete the analysis task, I was interested to observe how

they would work together. So I envisioned the collaboration as how they would engage in

discussing the task, working on the task, as a group or individually, on one device, or using

multiple devices. Similar to Petra et. al. (31), I used a few aspects to rate the collaboration as

close or loose collaboration. These are the engagement in discussing the task, working on

same information or same view, either using one or multiple devices. So in this environment,

I consider the collaboration is close in cases where all participants are engaged in a

discussion about the task and looking into one or multiple views using one or multiple

devices. As shown in Figure 23, there are a few cases were observed in the study in which

they can be considered as close collaboration. In all four cases, all participants were

engaged in the task. In cases when one participant detaches himself from the group to work

individually or to not engage in the work, these are considered to be medium collaboration as

the two other participants will still be working as a group in different ways.


