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A B S T R A C T

Over the past decade, there has been a significant increase in the development of visual
analytics systems dedicated to addressing urban issues. These systems distill intricate
urban analysis workflows into intuitive, interactive visual representations and interfaces,
enabling users to explore, understand, and derive insights from large and complex data,
including street-level imagery, street networks, and building geometries. Developing
urban visual analytics systems, however, is a challenging endeavor that requires consid-
erable programming expertise and interaction between various multidisciplinary stake-
holders. This situation often leads to monolithic and isolated prototypes that are hard to
reproduce, combine, or extend. Concurrently, there has been an increase in the availabil-
ity of general and urban-specific toolkits, frameworks, and authoring tools that are open
source and abstract away the need to implement low-level visual analytics functional-
ities. This paper provides a hierarchical taxonomy of urban visual analytics systems
to contextualize how they are usually designed, implemented, and evaluated. We de-
velop this taxonomy across three distinct levels (i.e., dimensions, categories, and tags),
juxtaposing visualization with analytics, data, and system dimensions. We then assess
the extent to which current open-source toolkits, frameworks, and authoring tools can
effectively support the development of components tailored to urban visual analytics,
identifying their strengths and limitations in addressing the unique challenges posed by
urban data. In doing so, we offer a roadmap that can guide the effective employment of
existing resources and chart a pathway for developing and refining future systems.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction1

In the last decade, the creation of visual analytics systems2

focused on urban issues has seen a notable surge. These sys-3

tems simplify intricate urban analysis workflows into intuitive,4
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interactive visual representations, enabling users to explore, un- 5

derstand, and derive insights from large, complex data. Exam- 6

ples of these datasets include street-level imagery, street net- 7

works, and building geometries. Developing urban visual ana- 8

lytics systems, however, is a challenging task that necessitates 9

significant programming expertise to handle several critical as- 10

pects, such as: (1) visualization to allow for data exploration in 11

urban environments, (2) data management to integrate diverse 12

urban data types and sources, (3) data analytics to highlight pat- 13

terns and trends, and (4) system performance to ensure interac- 14
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tive response times. Furthermore, such development requires1

collaboration between stakeholders from different disciplines,2

including urban planning, public policy, public health, and cli-3

mate sciences. The complexity involved and the tendency for4

these efforts to occur within the framework of one-off collab-5

orations often lead to the creation of monolithic and isolated6

prototypes that are rarely made publicly available. Such a sit-7

uation, with a notable lack of emphasis on interoperability as a8

design requirement, makes it difficult to extend existing systems9

and integrate discrete components into other tools.10

Concurrently, there has been an increase in the availability11

of general and urban-specific toolkits, frameworks, and author-12

ing tools. While not end-to-end visual analytics systems, they13

encapsulate visualization and analytics functionalities that fa-14

cilitate the implementation of these systems (e.g., supporting15

urban-specific analyses [1, 2] or the creation of map-based visu-16

alizations [3]). These toolkits, frameworks, and authoring tools,17

hereinafter named construction tools, vary concerning their ex-18

pressiveness, accessibility, efficiency, and, therefore, support19

different applications and users.20

While previous studies have reviewed and discussed both ar-21

eas (urban visual analytics tools [4, 5, 6, 7] and construction22

tools [8, 9, 10, 11, 12]), none have tried to draw connections23

between the two. In other words, what the common require-24

ments and features of urban visual analytics systems are, and25

what construction tools can assist in their implementation. Our26

goals are then threefold: (1) Gain a more grounded and practical27

comprehension of typical requirements and features in urban28

visual analytics systems; (2) Surface functionalities offered by29

construction tools in light of the previously identified require-30

ments and features; and (3) Identify needs that are not currently31

covered by existing construction tools, requiring low-level pro-32

gramming efforts by tool developers.33

To achieve our goals, in this paper, we first review over 13034

relevant urban visual analytics systems to identify their main35

design needs across 22 categories in four broad dimensions: vi-36

sualization, analytics, data, and system. We then review visual-37

ization and urban-specific construction tools, and discuss how38

their features match the needs of the systems identified in our39

work. Finally, we reflect on our findings to identify current40

shortcomings and directions for future research that we hope41

will pave the way for new toolkits, tools, and frameworks and42

help improve the process of designing and implementing urban43

visual analytics systems.44

Our work can be seen from two perspectives. First and fore-45

most, it is a guide for researchers with an in-depth review of46

urban visual analytics systems. Second, it is a resource for47

practitioners and tool developers, offering a curated selection of48

construction tools tailored to streamline the construction of sys-49

tems. This approach not only aids in bridging recent research50

and practical gaps but also fosters a synergistic relationship be-51

tween investigation and application in the urban domain.52

2. Background53

Urban visual analytics distinguishes itself through several54

unique aspects rooted in the complex and multifaceted nature55
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Fig. 1. Typical steps in a workflow for urban data analysis: Collection, gen-
eration, & discovery of data; Curation & transformation; Management;
Analysis & modeling to derive insights; and Visualization for data explo-
ration and presentation.

of urban environments. First and foremost, urban data is usu- 56

ally large and complex. Datasets such as 311 non-emergency 57

service requests [13, 14] and taxi pickups and drop-offs [15] 58

can contain millions (or even billions) of data points with sev- 59

eral attributes. This data size is beyond what is supported by 60

off-the-shelf database systems [9]. Data complexity is also a 61

common characteristic. Typically, urban visual analytics sys- 62

tems leverage various types of data, including mesh data de- 63

tailing building geometries [16], point cloud data representing 64

diverse built and natural environment features (e.g., sidewalks, 65

benches, trees) [17], imagery data captured at street level [16], 66

and streaming data from sensors [18]. 67

Second, these systems can be tailored to accommodate ex- 68

perts and stakeholders across various domains, each with dif- 69

ferent levels of data analysis expertise. Consequently, their de- 70

sign may necessitate accounting for varying degrees of data and 71

visualization literacy to facilitate a shared task ecosystem for a 72

heterogeneous user base [19, 20]. For example, an urban ac- 73

cessibility visual analytics system could provide advanced an- 74

alytical capabilities for urban planners and architects (e.g., the 75

ability to analyze multivariate spatial data) while providing sim- 76

pler and more direct visualizations and summaries to support 77

decision-making for government officials. 78

Third, tasks performed by users of these systems might re- 79

quire integrating several data sources at varying spatial resolu- 80

tions, with different visualization and analytics design choices 81

at each resolution [21]. For instance, an urban planner explor- 82

ing potential development sites in a city might choose a neigh- 83

borhood based on aggregated data (e.g., school rating) and then 84

drill down to a particular lot depending on more fine-grained 85

data (e.g., access to public transit stations). 86

Lastly, urban data analysis workflows might involve several 87

steps to derive insight from data [22]. This iterative process 88

includes the collection, generation, and discovery of data, fol- 89

lowed by its curation and transformation, management, analy- 90

sis, modeling, and visualization (Figure 1). While the goal of 91

a visual analytics system is to distill complex analysis work- 92

flows into intuitive, interactive visual representations and in- 93

terfaces, it must reconcile with the reality that users may al- 94

ready possess components of this workflow. This could mani- 95

fest through bespoke code (e.g., Python scripts for data clean- 96

ing and transformation) or commercially available tools (e.g., 97

ArcGIS Pro for data aggregation). This specificity is particu- 98

larly salient within the urban domain, given the popularization 99
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of data science methodologies for analyzing spatial and urban1

data. The extent to which an urban visual analytics solution2

aligns with established practices will decisively influence its3

sustained adoption and successful integration into existing ana-4

lytical workflows.5

The current landscape of urban visual analytics systems is6

marked by their intricate complexity. In order to implement7

them, developers and researchers need to have a deep under-8

standing across several fields within computer science, includ-9

ing visualization, data management, and human-computer in-10

teraction. The challenge of replicating and enhancing these sys-11

tems is magnified by the need to integrate diverse components12

seamlessly. This often leads to the creation of highly special-13

ized, siloed systems that overlook the importance of interoper-14

ability.15

In this work, we initiate an examination of urban visual an-16

alytics systems, identifying key requirements and features. We17

explore how existing construction tools can meet these identi-18

fied needs, aiming to streamline the development process. Our19

objective is to mitigate the frequent necessity for system devel-20

opers to reinvent the wheel, thereby fostering more efficient and21

interoperable system development for urban visual analytics.22

3. Related works23

The literature on urban visual analytics has been the sub-24

ject of a number of comprehensive reviews. Zheng et al. [4]25

reviewed over 150 research papers containing contributions to26

visual analytics in urban computing. Doraiswamy et al. [5] pre-27

sented a high-level overview of the challenges of urban data.28

Feng et al. [6] reviewed urban visual analytics contributions,29

clustering them into four broad groups (descriptive, diagnostic,30

predictive, and prescriptive analytics). Deng et al. [7] reviewed31

works along four primary dimensions (domain problem, visu-32

alization, integration of visualization, and computational meth-33

ods). More recently, Miranda et al. [23] surveyed papers with34

contributions leveraging 3D urban data.35

Additionally, other works have reviewed contributions to ur-36

ban analytics without a focus on visualization dimensions. Yap37

et al. [11] reviewed the state-of-the-art open-source software in38

urban planning. Biljecki and Ito [24] reviewed contributions to39

urban analytics of street-level imagery.40

Our work is complementary to the aforementioned surveys41

and reviews. We focus our efforts on reviewing existing urban42

visual analytics systems, from which we derive a detailed tax-43

onomy of requirements and features that can be used as a first44

step towards bridging the gap between bespoke urban visual45

analytics systems and construction tools. Furthermore, through46

this comprehensive analysis, we shed light on current gaps and47

opportunities and provide a curated resource for designing and48

implementing urban visual analytics systems.49

The work presented here is also a comprehensive extension50

of a previously accepted tutorial at SIBGRAPI 2023 [25]. In51

the current work, we present a detailed review of urban visual52

analytics systems and introduce a taxonomy that considers visu-53

alization, analytics, data, and system dimensions. Furthermore,54

we provide a detailed discussion on the availability of construc-55

tion tools to build urban visual analytics systems.56
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Fig. 2. Overview of the dimensions and categories used in our work. Each
category is further broken down into specific fine-grained tags (not shown).

4. Overview 57

To achieve our goals, this paper is divided in two parts. First, 58

we developed a taxonomy for urban visual analytics systems 59

by examining relevant works to uncover the core requirements 60

and features inherent to this field. This taxonomy is structured 61

around visualization, analytics, data, and system di- 62

mensions. Within each dimension, we further delineate cate- 63

gories which are then broken down into specific fine-grained 64

tags (see Figure 2). The remainder figures in this paper use a 65

common color scale, with changes in the intensity of colors to 66

indicate different categories. These dimensions and categories 67

were selected to represent important aspects that guide the de- 68

sign of visual analytics systems as well as implementation and 69

usage features. Specifically, using Munzner’s analytical frame- 70

work [26], we analyzed each paper in terms of What elements 71

of the urban environment are being visualized (i.e., data dimen- 72

sion); Why urban data is being analyzed (i.e., analytics dimen- 73

sion) and How urban data is being visualized (i.e., visualization 74

dimension). Additionally, the categories in the system dimen- 75

sion cover practical aspects related to the design, implementa- 76

tion and usage of the tools being proposed. Section 5 describes 77

the categories and tags and their application in classifying each 78

analyzed paper. 79

In the second part of this paper, we discuss construction tools 80

that can be used to implement the surveyed requirements and 81

features (Section 6). Leveraging our analysis, we delve into 82

the distinctive features of various methods used in implement- 83

ing urban visualizations. In Section 7, we highlight the prin- 84

cipal limitations uncovered through our analysis and pinpoint 85

promising avenues for future development aimed at enhancing 86

the existing construction tools for urban data visualization. Fi- 87

nally, in Section 8, we present the survey’s conclusions. 88

4.1. Methodology 89

For the selection of the urban visual analytics systems, we 90

have included papers surveyed by Zheng et al. [4], Doraiswamy 91

et al. [5], Feng et al. [6], and Deng et al. [7]. From these sur- 92

veys, we gathered 78% of the papers used in our work. We sup- 93

plemented this initial corpus by performing searches on Google 94

Scholar using a set of keywords (visual urban analytics; urban 95

AND visualization; city AND visualization). Table 1 shows the 96

number of papers extracted from each source. Our inclusion 97
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Table 1. Number of papers collected from the sources.

Source Number of papers

Zheng et al. [4] 13
Doraiswamy et al. [5] 7
Feng et al. [6] 40
Deng et al. [7] 45
Keyword search 30

Total 135

criteria were limited to publications describing urban visual an-1

alytics systems, excluding those focused solely on introducing2

new glyphs or evaluation methodologies. Ultimately, our re-3

view encompasses over 130 publications.4

For the construction of the taxonomy, we followed a multi-5

staged approach. First, an initial meeting was held to agree6

on the main dimensions of urban visual analytics systems that7

would be considered in our work. After the initial meeting, we8

agreed on four dimensions: visualization, analytics, data, and9

system. Subsequently, one co-author went through each one10

of the papers, extracting relevant fine-grained tags for each di-11

mension. For the tags related to visualization, we considered12

images and sections related to the visualization interface. For13

analytics tags, we reviewed the papers’ description of system14

requirements. 55% of the papers explicitly listed all the re-15

quirements. For the papers without a list of requirements, the16

tags were extracted after a careful consideration of the entire17

text and case studies. We used a similar approach for the data18

and system tags, focusing on data description and system im-19

plementation sections. In a second stage, the co-authors met to20

finalize the list of tags. Redundant tags were either removed or21

consolidated into broader ones. Then, one co-author reviewed22

each paper one more time to ensure that all tags were properly23

considered.24

At the end of the first stage, we obtained more than 190 tags.25

Some of these tags were too specific, appearing in less than 1%26

of the reviewed papers. Therefore, we discussed and decided to27

exclude these tags. At the end of the second stage, after filtering28

and consolidation of tags, we had over 160 tags. In the third29

stage, we agreed on a set of intermediate categories to group30

similar tags. This led to the creation of a hierarchical taxonomy31

with three levels (dimensions, categories, and tags). Section 532

will discuss the taxonomy in more detail.33

For the selection of the construction tools, we included popu-34

lar visualization toolkits, frameworks, and authoring tools men-35

tioned in previous works. Notably, we considered the following36

works: McNutt’s survey on visualization grammars [12], Mei et37

al.’s design space of construction tools [8], Qin et al.’s survey on38

efficient and effective data visualization [9], and Yap et al.’s sur-39

vey on open-source tools for urban planning [11]. Construction40

tools were included if they offered features for the construction41

of urban visual analytics systems. Adopting this criteria, we42

identified over 30 construction tools.43

Limitations. Given urban visual analytics’ broad scope, we did44

not cover all possible venues. Instead, we relied on a mix of45

previous surveys and keyword searches for our corpus. Addi- 46

tionally, we focused on visual analytics tools proposed in the 47

visualization community – therefore, dashboards and simpler 48

visualization interfaces were not included in our review. While 49

our findings provide valuable contributions and a road map for 50

future research, they should be considered as part of a broader, 51

ongoing discussion about the development and application of 52

urban visual analytics systems. 53

5. Urban visual analytics dimensions 54

We reviewed over 130 research works, identifying a spectrum 55

of systems designed to tackle various urban challenges. Some 56

of the systems are devoted to addressing widely-recognized 57

urban issues, offering insights into socioeconomics [27], ur- 58

ban mobility [28, 29, 30], safety [31], noise [32], sunlight ac- 59

cess [16], and flooding [33]. Additionally, these systems vary 60

across different spatial scales. Some offer functionalities for 61

building-level analyses [34, 35], while others focus on neigh- 62

borhood [36] or city-level analyses [37, 16]. Some systems also 63

offer capabilities for multi-scale analyses [38, 21]. 64

Given this broad prospect, we created a hierarchical taxon- 65

omy to discern specific traits across this diverse range of sys- 66

tems. At the first level of this hierarchy lies the four dimen- 67

sions we defined. These dimensions encompass visualization, 68

analytics, data, and system characteristics. The second level of 69

our hierarchical taxonomy introduces 22 different categories, 70

which offer a more nuanced breakdown within each dimen- 71

sion, allowing for a deeper specificity regarding the function- 72

alities of urban visual analytics systems. Figure 2 provides an 73

overview of dimensions and categories. These categories pro- 74

vide an overview through which we can examine the distinct 75

aspects of each system’s capabilities. For instance, in the visu- 76

alization dimension, categories such as spatial and abstract vi- 77

sualizations provide a detailed perspective on the various tech- 78

niques and methodologies used in the reviewed systems. The 79

final tier of our hierarchy is the tag level, which offers the most 80

fine-grained characterization concerning each system. At this 81

level, over 160 tags were created. These tags serve as detailed 82

descriptors, pinpointing specific attributes or functionalities. 83

In what follows, we delve into each dimension, exploring the 84

diverse categories within and emphasizing specific tags. Given 85

the extensive number of tags, we will focus our discussion 86

on those that are most frequent, most relevant for discussion, 87

and crucial for understanding the characteristics of the systems. 88

This section is organized as follows: Section 5.1 presents the 89

visualization dimension; Section 5.2 presents the analytics di- 90

mension; Section 5.3 presents the data dimension; and Sec- 91

tion 5.4 presents the system dimension. To enhance readability, 92

categories, and tags within a dimension are distinctly identified; 93

categories are marked, and tags are underlined, both utilizing 94

the same dimension color for clarity. 95

5.1. Visualization 96

A visualization system must adeptly present information, 97

leveraging well-selected, familiar visual metaphors to ensure 98

the conveyed message is both clear and succinct. The choice of 99
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(a) (b) (c) (d)

Fig. 3. Examples of works with the following tags: (a) 2D map [39], (b) 3D map [40], (c) vector fields [41], and (d) tailored visualizations [42].

visualization techniques is fundamental, requiring a thorough1

consideration of the data type, the specific analytical tasks the2

system aims to address, and the intended audience. These con-3

siderations are foundational in selecting each scenario’s most4

fitting visualization approach. Beyond merely choosing exist-5

ing visualization methods, the system should have the flexibil-6

ity to combine multiple views, offering fresh perspectives on7

complex urban challenges. Here, we categorize the array of vi-8

sualization types employed in urban visual analytics, aiming to9

identify commonly used methods and highlight those adapted10

for particular types of urban issues.11

The visualization dimension has the following categories:12

spatial, abstract, temporal, hierarchical, and tailored visualiza-13

tions. We follow Sorger et al.’s [43] definition to differentiate14

between spatial and abstract visualizations. According to this15

definition, spatial visualizations map data points to their inher-16

ent 2D or 3D spatial coordinates, whereas abstract visualiza-17

tions lack explicit spatial references or deliberately disregard18

them. Temporal and hierarchical prioritize time and hierarchi-19

cal structures, respectively, as their main elements. Meanwhile,20

tailored visualizations are specifically designed to meet unique21

requirements. Within these categories, there are a total of 3822

tags. Figure 3 shows examples of visualization tags.23

Spatial. This category includes tags connected to the devel-24

opment of spatial visualization metaphors, which are inher-25

ently linked to urban environment analyses. We have found26

that over 95% of the reviewed systems include spatial visualiza-27

tions, with only three instances lacking this feature [44, 45, 46].28

This category includes 11 tags. 85% of the systems included a29

2D map. For example, Chen et al. [47] used a 2D map to visual-30

ize trajectories, and Neto et al. [48] for crime analysis. 50% of31

the systems used a heatmap, often applying kernel density esti-32

mation to the spatial data [49, 50, 51]. 40% of the systems used33

visualizations for trajectories, such as graph views [52], color-34

coded street segments [39], and multi views [53]. In particular,35

only one reviewed system used vector fields to support trajec-36

tory analysis [41]. A sixth of the systems used a 3D map. For37

example, Cornel et al. [54], Boorboor et al. [55], and Bonadia38

et al. [56] used 3D maps for flood analysis. Miranda et al. [16]39

and Moreira et al. [2] used 3D maps for sunlight access and40

shadow analyses. 7% of the reviewed systems make use of a41

combination of multiple maps [57, 58]. Other spatial visualiza-42

tions include choropleth maps (13%) (e.g., [59, 60]), contour43

maps (7%) (e.g., [61, 57, 48]), grid (5%) (e.g., [62]), voronoi44

diagram (3%) [63, 64], and dorling cartogram (1%) [65].45

Abstract. Each tag within this category represents a form of46

abstract visualization, i.e., where explicit spatial references are47

either missing or ignored. In this category, we have reviewed 48

systems considering 19 tags. The most popular tag is bar chart 49

(48%) (e.g., [66, 67, 68, 69]), followed by scatterplot (32%) 50

(e.g., [70, 71]), line chart (31%) (e.g., [18, 72]), and heat ma- 51

trix (22%) (e.g., [60, 73]). Fewer than 20% of the systems used 52

area chart (17%) (e.g., [54, 53]) and parallel coordinates (14%) 53

(e.g., [28, 74, 75]). The other abstract visualizations were used 54

in fewer than 10% of the systems: radar chart, parallel set, 55

donut chart, box plot, violin chart, pie chart, dot plot, polar 56

coordinates, word cloud, gauge chart, and spectrogram. 57

Temporal. Just as the spatial category is focused on visual- 58

izations designed for spatial analysis, this category is directly 59

connected to the analysis of temporal data. We created tags re- 60

lated to the visualization of time-varying data, yielding three 61

tags across all analyzed papers. Time series was the most pop- 62

ular temporal visualization, present in 37% of the systems. For 63

example, Miranda et al. [18] and Wei et al. [73] used time se- 64

ries to visualize sensor data. 17% of the systems used timelines 65

(e.g., [33, 76]). Deng et al. [77] used timelines for cascading 66

exploration. Only 2% used streamgraph (e.g., [78]). 67

Network. Similar to how the spatial and temporal categories are 68

tailored for spatial and temporal analyses, this category is linked 69

to the visualization of networks and hierarchical data structures. 70

Recognizing this, we have identified five tags representing net- 71

work visualization techniques used across the surveyed papers. 72

The most popular technique was the node-link diagram (25%) 73

(e.g., [79, 80, 81]). Krueger et al. [81] and von Landesberger 74

et al. [80] used node-links for mobility data and employed an 75

aggregation scheme to reduce visual clutter. Fewer than 10% of 76

the systems used the following techniques: tree diagram (e.g., 77

[82]), sunburst (e.g., [83, 84]), chord diagram (e.g., [85]), and 78

treemap (e.g., [86]). 79

Tailored. In this category, we considered custom visualiza- 80

tions specifically created for urban visual analytics system. 81

Typically, these visualizations aim to address more specific 82

analytical problems, such as flow analysis [87], route analy- 83

sis [67, 88, 89], and distribution analysis [42]. Often, these 84

new designs are built upon or utilize combinations of exist- 85

ing ones; for example, Zheng et al. [74] extended parallel co- 86

ordinates for origin-destination analysis, and Wu et al. [75] 87

based their new design on tree maps. In total, 25% of the 88

works reported the implementation of a new visualization 89

(e.g., [28, 57, 90, 91, 92, 93, 64, 94, 87]). 90

5.2. Analytics 91

We have also characterized urban visual analytics systems 92

concerning their analytical requirements. In this section, we re- 93

port on the most frequent analytics tags across three categories. 94
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The spatial & temporal category describes whether the system1

supports analyses based on location or time. The analytical2

task category describes which tasks are supported by the sys-3

tem. The urban-specific task category covers analytical tasks4

that are more specific to the urban domain. We also describe5

the tags that arose from this review. It is important to highlight6

that a mix of tags can characterize a system’s capabilities. For7

example, Rulff et al.’s [36] supported analyses of acoustic data8

based on spatiotemporal similarities. Here, spatiotemporal falls9

under the spatial & temporal category, and similarity belongs to10

the category of analytical tasks. Figure 4 presents an overview11

of the distribution of visualization and analytics tags.12

Spatial & temporal. In this category, we include tags con-13

nected to the analysis of spatial and temporal components of14

the urban data. This category includes tags that cover the need15

to analyze how urban phenomena evolve and interact over var-16

ious locations and periods. We surfaced three tags for this cat-17

egory: spatial, temporal, and spatiotemporal. Since a system18

can support each of these analyses individually (i.e., enable19

spatiotemporal and temporal analysis through its components20

but not be capable of purely spatial analysis), these tags are21

not mutually exclusive. The vast majority of systems (95%)22

supported spatial analysis (e.g., [95, 21, 96, 97, 31, 98, 99]).23

For example, Ferreira et al. [21] supported spatial analysis of24

view impact. 82% of systems supported temporal analysis (e.g.,25

[42, 33, 50, 100]). Shi et al. [50] supported temporal analysis26

for event detection. 87% of systems supported spatiotempo-27

ral analysis (e.g., [37, 101, 27, 102, 103]). Li et al. [27]., for28

example, presented a framework to support analysis of inter-29

dependencies in spatiotemporal data, such as air quality data.30

Among all the works reviewed, only one was not covered by31

any of these tags. Gou et al.’s [104] system was solely used for32

detecting traffic lights in non-georeferenced static images.33

Analytical tasks. This category encompasses the analytical34

tasks supported by the systems. Nine tags have been considered35

in this category, covering a range of analyses prevalent across 36

many studies. The most frequent examples include comparative 37

(80%) (e.g., [37, 83, 105]), pattern (50%) (e.g., [90, 80, 31]), 38

distribution (40%) (e.g., [106, 94, 107, 108, 73]), and corre- 39

lation (36%) (e.g., [109, 75]) analyses. For instance, Lyu et 40

al.’s [105] system enables comparative analysis to examine mul- 41

tiple key indicators including accessibility to amenities, ben- 42

efits for diverse resident types, and measures of inequality to 43

assess and mitigate urban inequality. Garcia et al.’s CrimAna- 44

lyzer [31] supported pattern analysis for crime data, and Sun 45

et al.’s system [107] supported distribution analysis for traf- 46

fic data. In addition to these, other analytical tasks include 47

clustering (28%) (e.g., [110, 111, 112, 77]), similarity (22%) 48

(e.g., [65, 60, 113]), outlier (18%) (e.g., [114, 115]), trend 49

(16%) (e.g., [109]), and sequential (6%) (e.g., [111, 116]) 50

analyses. While clustering techniques group samples based 51

on their similarity, not all systems support both clustering and 52

similarity analysis. For instance, Maciejeski et al.’s [110] sys- 53

tem focuses on predictive modeling of spatiotemporal hotspots 54

through cluster analysis without using similarity analysis be- 55

tween individual events. QuteVis [113] supports similarity 56

analysis without clustering by utilizing a weighted similarity 57

computation among multiple user-drawn sketches, which are 58

visualized as cues for comparing retrieved traffic situations and 59

identifying influential factors. Among the systems that sup- 60

port both functionalities, MobilityGraphs [80] facilitates cluster 61

analysis to aggregate, visualize, and analyze spatial locations 62

and flows into regions and temporal clusters while also employ- 63

ing similarity analysis to measure and compare the relatedness 64

of different spatial situations or clusters. TelcoFlow [115] of- 65

fered outlier analysis to detect anomalies in mobile phone data. 66

Malik et al.’s [109] system employed trend analysis to identify 67

patterns such as daily and weekly cycles, significant incident 68

correlations, and spatial co-occurrence of incidents (e.g., crime 69

hotspots). Steptoe et al.’s [111] system facilitated the detec- 70
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(a) (b)

Fig. 5. Examples of urban-specific tasks: (a) visibility [35] and (b) traf-
fic [84] analyses.

tion of patterns in sequential data (i.e., sequence of activities or1

events).2

Urban-specific tasks. Contrasting with the last category,3

in this class, we cover higher-level and domain-specific tasks4

common in the surveyed systems. 47% of the systems sup-5

ported flow analysis focusing on the origin-destination move-6

ment within urban spaces [117, 91, 52, 60]; 42% supported traf-7

fic analysis addressing vehicular dynamics [101, 118, 119, 100,8

120]; Route analysis for navigation and pathfinding was sup-9

ported by 37% [121, 70, 39, 88]. We differentiated this anal-10

ysis from reachability analysis (supported by 4%), which fo-11

cused on the analysis of access, connectivity, and accessibility12

within urban environments [122, 123, 40]. For example, Zeng13

et al. [123] proposed a system to find locations that satisfy cer-14

tain criteria, such as distance to schools.15

The analysis of the impact or repercussion of historical events16

was supported by 28% of the systems (e.g., [110, 124, 54, 55]).17

In contrast, what-if analysis distinguishes itself by requiring18

user interaction with the system to create and assess hypothet-19

ical scenarios. Such type of analysis was supported by 27% of20

the systems (e.g., [79, 30, 102, 98]). For example, Andrienko21

et al. [102] used scenarios to analyze how removing metro lines22

impacts travel times.23

Text analysis was supported by 7% of the systems (e.g.,24

[125, 126, 106]), a similar percentage to model analysis, which25

pertains to the construction, use, or evaluation of machine learn-26

ing models (e.g., [104, 127, 128]). Visibility analysis was sup-27

ported by 2% of the systems [21, 34, 35]. These systems pro-28

vide interaction and visualization mechanisms to evaluate the29

visibility of buildings to landmarks or open spaces. Figure 530

highlights examples of urban-specific tasks.31

5.3. Data32

For this dimension, we have reviewed data aspects of the sur-33

veyed urban visual analytics systems. Six categories are in-34

cluded. The physical category considers whether the system35

leveraged data regarding the natural and built environment of36

cities. The environmental monitoring & simulation category37

covers aspects related to the observation of environmental con-38

ditions and the modeling of natural events, including weather39

patterns and flood scenarios. Transport & mobility covers as-40

pects related to private and public transportation. The social41

& economic category contains tags related to societal behav-42

iors and economic variables. The public safety & health cate-43

gory covers aspects related to crime, emergencies, and public44

health. We have also reviewed works on whether they utilized45

data from the Visual Analytics Science and Technology (VAST)46

Challenge, a visualization competition that provides data to vi- 47

sualization researchers and programmers. Using the tags from 48

the aforementioned categories, we have reviewed the systems’ 49

data characteristics, themes, and sources. Figure 6 presents the 50

distribution of visualization and data tags. 51

Physical aspects. One of the widely used data in urban vi- 52

sual analytics is physical data, which describes the physical par- 53

ticularities of the environment, such as polygons for neighbor- 54

hood areas, city boundaries, and bodies of water, or graphs for 55

street networks. Such data directly supports spatial analyses, 56

providing a basis layer upon which various urban elements can 57

be examined and understood. By examining the surveyed urban 58

visual analytics systems, we identified six tags within this cat- 59

egory. 18% of works made reference to using OpenStreetMap 60

data (e.g., [29, 129, 130, 56]). 10% of works used points of in- 61

terest, such as hospitals and metro stations (e.g., [131, 47]). 5% 62

of works used building data (e.g., [68]). For example, Santos et 63

al. [132] used an open dataset with detailed information regard- 64

ing New York City’s building lots to enable land-use change 65

analysis. Also 5% of works leveraged street network data for 66

their analysis (e.g., [116, 133]). For example, He et al. [133] 67

used network data to support bike lane planning. 68

Environmental monitoring & simulation. In this category, 69

we included tags related to data with information regarding 70

the monitoring of the environment or simulation and modeling 71

of natural events. Over 25 systems leveraged. These include 72

systems that used air quality data (6%) (e.g., [27, 85, 103]), 73

weather data (7%) (e.g., [134, 113]), and flood data (5%) 74

(e.g., [117, 135]). Ribičić et al. [117], for example, presented 75

a multi-view system to analyze flooding simulations. 3% of 76

the analyzed works employed data that included detailed mon- 77

itoring of noise within urban environments (e.g. [18, 36, 32]). 78

We have also surveyed work with information regarding wa- 79

ter quality [129], sunlight access and shadow [16, 2], and sky 80

exposure [21]. Figure 7 presents examples of visual analytics 81

systems using flooding simulations and sunlight access data. 82

Transport & mobility. This type of data represents a fo- 83

cal point within urban studies, addressing a broad spectrum of 84

challenges related to traffic congestion, routing, public trans- 85

portation, walkability, reachability, and accessibility. This is 86

underscored in our review, with 79 of the surveyed papers in- 87

corporating transport and mobility data in their works. In this 88

case, six tags stood out, with the highest occurrence recorded 89

for taxi (24%) (e.g., [70, 58, 77, 120]), mobile phone data (18%) 90

(e.g., [121, 71, 73]), traffic jam (14%) (e.g., [61, 84, 136]), and 91

public transportation (11%) (e.g., [95, 137, 119]). Palomo et 92

al. [46], for instance, proposed a system to inspect metro sched- 93

ules with a visualization inspired by EJ Marey’s train schedule. 94

Social & economic. Another common type of urban data is re- 95

lated to socioeconomic factors. In this category, we include tags 96

that describe phenomena that are primarily driven by human ac- 97

tivity. Such data can assist in the analysis of economic patterns, 98

demographic shifts, property market trends, etc. In our review, 99

13% of the works leveraged social media data [126, 80, 41]. 100

For instance, Miranda et al. [138] utilized Twitter data to an- 101

alyze the behavioral patterns of cultural communities by clas- 102

sifying geo-located tweets based on language. 6% of systems 103
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31 matches is represented by . Bar charts show the number of systems with that respective tag.

employed economic data (e.g., [139, 27]). Aliaga et al. [139],1

for example, used data regarding jobs to support the analysis of2

the interplay between urban land use and meteorological fac-3

tors. 5% of the works used population data (e.g., [74]). 3% of4

the works leveraged real estate data (e.g., [86, 132].5

Public safety & health. This data category contains tags6

covering data related to crime, emergencies, and public health.7

(a) (b)

(c)

Fig. 7. Examples of systems using different data: (a) flood simulation [55],
(b) sunlight access simulation [2], and (c) taxi trips [120].

Among all data categories, public safety & health was the one 8

with the lowest number of papers, 18, which represents 14% 9

of the total. The three tags in this category include emergency 10

(5%) (e.g., [124, 111, 40, 140, 141]), crime (5%) (e.g., [37, 48, 11

31]), and epidemiological data (4%) [110, 142, 143]). In our 12

work, we distinguished between emergency and epidemiolog- 13

ical data. The first refers to data focused on crisis response 14

(such as the data used by Li et al. [40] to analyze evacuation 15

strategies), and the second is focused on disease data (such as 16

COVID-19 data used by Frank et al. [143] to understand the 17

virus’ spreading behavior). 18

VAST Challenge. This data category encompasses works that 19

implemented systems to solve real-world urban problems using 20

VAST Challenge datasets. Approximately 2% of the surveyed 21

works leveraged these datasets. For example, Chen et al. [82] 22

used the VAST Challenge 2014 Mini Challenge 2 dataset to an- 23

alyze human behaviors by identifying general movement pat- 24

terns and detecting abnormal events. Steptoe et al. [111] lever- 25

aged the VAST Challenge 2015 DinoFun World dataset to cre- 26

ate a system capable of exploring visitor behaviors in a theme 27

park by analyzing trajectories and communication patterns of 28

park visitors. In SensorAware [73], the VAST Challenge 2019 29

Mini Challenge 2 dataset was used to help emergency manage- 30

ment teams understand situations related to radiation measure- 31

ments in the city and identify areas needing sensor deployment, 32

cleansing, or evacuation. 33

5.4. System 34

An additional critical dimension of our evaluation encom- 35

passed the systems’ attributes, covering: the organization of 36
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respective visualization and system tags. If no systems matched a specific set of tags, the cell is represented by x , while the cell with the maximum value
of 126 matches is represented by . Bar charts represent the number of systems with that respective tag.

their interfaces and features supported by the system, construc-1

tion tools utilized, data and system availability, requirement2

gathering, evaluation methodologies, and the domain applica-3

tion of the system. Figure 8 shows the distribution of visualiza-4

tion and system tags.5

(a)

(b) (c)

Fig. 9. Examples of the different compositions employed by the surveyed
systems: (a) overlay [80], (b) juxtaposition [36], and (c) nesting [94].

Composition of views. In our examination of urban visual6

analytics, we categorized them based on their methodologies7

for integrating multiple visualizations. Considering the multi-8

faceted nature of urban data, our review highlighted the varied 9

strategies employed to extract insights from distinct dimensions 10

of the data. For this category, we tagged urban visual analytics 11

systems following Deng et al.’s recent taxonomy [144] with de- 12

sign patterns for composite visualizations. As such, each sys- 13

tem was tagged as using one or more of the following com- 14

position patterns: overlay, juxtaposition, or nesting. Figure 9 15

exemplifies these patterns. In our review, we found that the vast 16

majority of systems used overlay composition (96%), in which 17

views are composed by visually overlaying visualizations on 18

others (e.g., [139, 41, 48]). Von Landesberger [80], for exam- 19

ple, overlaid graphs onto maps. Juxtaposition appears in 81% 20

of the systems. In this pattern, visualizations are positioned side 21

by side, with no overlap (e.g., [70, 46, 138, 35, 18, 27, 145, 36]). 22

Miranda et al. [145] juxtaposed an image gallery with a map 23

view to enable the exploration of street-level image data. Nest- 24

ing appears in 51% of the surveyed systems. In it, visualiza- 25

tion components are embedded into the internal area of other 26

components (e.g., [92, 94, 97]). Shen et al.’s system [94], for 27

example, enhanced parallel coordinates with the use of theme 28

river-style visualization. Since these tags are not mutually ex- 29

clusive, there were systems that combined these visualization 30

composition patterns, and some works even incorporated all the 31
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patterns [64, 94].1

System features. This category covers various functionali-2

ties and capabilities of the surveyed urban visual analytics sys-3

tems, reflecting how users can interact with and benefit from4

the system. In total, over 15 distinct tags were defined to rep-5

resent the broad spectrum of features implemented in the urban6

visual analytics systems. These tags can be broadly grouped7

into two groups: (1) Tags related to querying capabilities: In-8

teractive queries were supported in 46% of the systems (e.g.,9

[107, 112]); Custom queries were supported by 44% of the10

systems; these queries allow the users to create personalized11

queries through the selection or definition of various data at-12

tributes (e.g., [90, 113]); Natural language queries (1%) in13

systems that supported the use of natural language as a query14

mechanism (e.g., [146]). Finally, 2% of the systems enabled15

users to query the data through user-defined visualizations ([2]).16

(2) Tags related to the technical data infrastructure. The sim-17

ulation (13%) tag was used to cover systems that performed18

or leveraged simulation data (e.g., [117, 135, 147, 55]); The19

Streaming (13%) tag characterizes systems that supported con-20

tinuous ingestion of data (e.g., [18]); Model interaction (10%)21

was used to characterize systems that enabled human-in-the-22

loop model investigation (e.g., [114, 148]). Data integration23

(14%) defines systems that integrated data from different do-24

mains (e.g., [149]). Provenance (2%) was used to distinguish25

systems that provided a detailed record of the data and pro-26

cesses used [150]. For instance, in TPFlow [151], provenance27

is incorporated to track and document the data partitioning and28

analysis steps, providing a mechanisms for analysts to revisit29

and refine them.30

Construction tools. In this category, we reviewed the con-31

struction tools used to implement the urban visual analytics32

systems. Only 29% of the papers formally described the33

use of at least one construction tool in the development of34

the system. Despite their overall lower number, some tools35

stood out, such as D3, being used by 12% of the surveyed36

works (e.g., [46, 35, 76, 41, 152]), and OpenGL with 7%37

(e.g., [153, 34, 154, 16]), often associated with its capability to38

efficiently render 3D city models. Next, Leaflet was used in 7%39

of the systems (e.g., [129, 50], followed by Qt (4%) [78, 153]40

and WebGL (4%) [97, 2]. Other tools appeared in less than 1%41

of the surveyed works, including QGIS [82], Vega-Lite [2] and42

ArcGIS [105].43

Data availability. In this category, we assessed whether the44

urban visual analytics tools used open datasets, closed datasets,45

or a combination of both. Accordingly, three tags have been46

designated for this category: open, closed, and partially open.47

It is important to note that, in this case, a single work cannot48

be associated with more than one of the tags, as they represent49

mutually exclusive options regarding data availability. In our50

review, the percentage of works that utilized closed datasets51

(47%) (e.g., [155, 156, 133]) was relatively balanced with those52

that exclusively employed open datasets (39%) (e.g., [125, 41]).53

Meanwhile, the proportion of works where the data was par-54

tially open was 13% (e.g., [157, 74]).55

System availability. To assess the availability of a system’s56

source code, we examined whether the projects were publicly57

available (e.g., GitHub). Consequently, we classified the sys- 58

tems in a binary manner as either open or closed based on the 59

availability of their source code. In our analysis of the systems, 60

a notable imbalance was observed between open and closed 61

systems. Specifically, 90% of the reviewed systems were closed 62

source and did not make their code publicly available. Con- 63

versely, only 10% of the works were open source, with source 64

code publicly accessible in some form (e.g., [158, 51, 2]). 65

Requirements methodology. To elucidate the design 66

methodologies behind the urban visual analytics systems sur- 67

veyed, we reviewed the papers regarding the strategies em- 68

ployed to surface system requirements. Such review resulted 69

in 5 tags that described how authors identified system require- 70

ments. Such a process is fundamental for understanding how 71

the system’s components and functionalities came to be to ad- 72

dress particular domain problems. In the reviewed works, 50% 73

mentioned collaboration with experts (e.g., [81, 113, 87]), and 74

13% involved experts from different domains (e.g., [137, 89]). 75

Within these works, 2% had collaborations lasting less than 6 76

months (e.g. [100]), 5% between 6 months to 1 year (e.g., [58, 77

152]), and 2% reported long-standing collaborations lasting 78

more than 1 year (e.g., [48]). 79

Evaluation. We have also reviewed works regarding their 80

evaluation methodology. We classified the works following the 81

taxonomy recently proposed by Khayat et al. [159]. The tax- 82

onomy provides a comprehensive guide for evaluation methods 83

in visual analytics. The vast majority of the works employed 84

qualitative case studies (86%) (e.g., [44, 30, 160, 55, 69]), fol- 85

lowed by expert feedback (63%) (e.g., [29, 135, 33, 35, 161]). 86

Quantitative automation testing was employed by 13% of the 87

works (e.g., [121]). Quantitative user testing (e.g., [162]) and 88

quantitative user opinion (e.g., [153]) were employed by 8% of 89

the works. For example, Lorenzo et al. [121] used automatic ap- 90

proaches to quantitatively compare estimated origin-destination 91

flows. Meghdadi et al. [162] measured their system’s effective- 92

ness by timing task completion with 18 users. Lu et al. [153] 93

assessed their system through user questionnaires and quantify- 94

ing their feedback. 95

Domains. Lastly, we tagged each work based on the application 96

domain of the system. At the end of this process, we identified 97

12 distinct tags to categorize each urban visual analytics sys- 98

tem, aimed at addressing and managing specific urban issues. 99

To achieve this, we conducted a thorough review to identify 100

the domain of contributing experts and analyzed study cases, 101

ensuring a comprehensive understanding of each system’s ap- 102

plication domain. Urban mobility was the tag that appeared 103

the most, with 52% occurrences [63, 64, 131, 137, 69, 136]. 104

The systems’ applicability to urban mobility can be seen in 105

multiple case studies. For instance, in MobiSeg [64], the sys- 106

tem was used to integrate and analyze heterogeneous mobility 107

data (e.g., taxi trajectories, metro passenger RFID card data, 108

and telco data) to identify segments in urban regions based 109

on people’s movement activities. MetroBUX [69] was used 110

to identify periods and regions of high uncertainty in bus ar- 111

rival times, highlighting peak hours and regions. In another 112

instance, TCEVis [136] authors showed how the system iden- 113

tified and quantified the impact of various factors (e.g., holi- 114
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days and weather conditions) on traffic congestion. Another1

frequent tag was urban planning, being present in 31% of our2

sample [16, 145, 105]. For instance, in IF-City [105], a syn-3

thetic case study showcased how the system can reallocate res-4

idents and modify urban designs to improve fairness and bene-5

fits across diverse resident types by simulating various planning6

scenarios. Urban Mosaic [145] authors, on the other hand, high-7

lighted its applicability by showing how the system was able to8

help practitioners identify and address accessibility challenges,9

such as the installation of tactile pavings for older adults. The10

social behavior tag arose in 25% of the studies [42, 82, 141].11

In CLEVis [141], the authors demonstrated their system’s abil-12

ity to aid in understanding social behaviors through case stud-13

ies on Hurricane Katrina’s impact, drug overdose patterns, and14

town-wide crime analysis. Following, the public safety tag was15

found in 13% of the works [48, 140, 31]. A notable example of16

a system’s applicability to public safety is demonstrated by the17

Mirante system [140], which revealed how urban infrastructure18

impacts vehicle robbery patterns and how urban revitalization19

efforts reduced passerby robbery. The other domain tags were20

used in less than 10% of the systems: pollution [85, 72], archi-21

tecture [21, 35], politics [76], flood management [55], meteo-22

rology [139], public health [59], logistics [53], radio propaga-23

tion [154].24

6. Visualization toolkits, frameworks & authoring tools25

Urban visual analytics systems rely on several toolkits,26

frameworks & authoring tools to implement their visualization27

requirements. As more implementation tools are created and28

made available for reuse by the community, the effort to cre-29

ate intricate systems reduces. The expressiveness of the visual-30

ization tools chosen to support the implementation of an urban31

visual analytics tool is key to building powerful and engaging32

user interfaces, which allow stakeholders to validate hypothe-33

ses, generate insights, and build knowledge from the explo-34

ration of the datasets of interest. In the second part of this work,35

we surveyed visualization tools that may support the urban vi-36

sual analytics requirements described in Section 5.37

We identified over 30 visualization tools with distinct char-38

acteristics that fit a diverse set of development requirements.39

These tools range from low-level libraries (D3 [163]) to com-40

plex visualization applications (e.g., Tableau [164] and Ar-41

cGIS [165]). It also includes tools designed for the creation42

of predefined visualizations (e.g., Chart.js [166], and Google43

Maps [167]) and tools based on the grammar of graphics that44

allow the creation of custom designs (e.g., Vega [168], and gg-45

plot2 [169]). Figure 10 presents an overview of the reviewed46

construction tools and their capabilities to implement different47

visualizations.48

As previously described in Section 5.1, the visualization re-49

quirements of the surveyed systems were classified into spatial,50

abstract, temporal, hierarchical, and tailored. In what follows,51

we discuss the most adequate tools currently available to imple-52

ment these requirements.53

Spatial. The visualization of spatial data plays a central role54

in urban visual analytics systems since data produced by cities55

are usually associated with geographical locations. This data 56

is oftentimes visualized over a single or multiple maps, which 57

conveys the spatial context of the city. Depending on the urban 58

data characteristics (e.g., spatial dimension) and the tasks per- 59

formed using the system, both 2D and 3D maps may be used. 60

Almost all identified implementation tools facilitate the gener- 61

ation of 2D maps. If little spatial context is required, it is pos- 62

sible to implement 2D maps using libraries such as D3, Vega, 63

and Vega-Lite [170]. However, when more sophisticated maps 64

are required, it is necessary to adopt specific map visualization 65

tools (e.g., Google Maps [167], Mapbox [171], Geemap [172], 66

and Bing Maps [173]). When 3D maps are required, the num- 67

ber of implementation tools available is considerably smaller. 68

Robust tools, such as ArcGIS [165] and QGIS [174], provide 69

3D mapping capabilities, but they are harder to integrate into 70

a customized system. On the other hand, a few libraries (e.g., 71

Mapbox [171], kepler.gl [3], deck.gl [175], pydeck [176], Ce- 72

siumJS [177], and Maptalks [178]) are available to create 3D 73

maps but usually focus on terrain visualization, have limita- 74

tions in rendering buildings or do not provide access to the 75

underlying data. If the system requires rendering large areas 76

and accessing the geometry of buildings, streets, and other ur- 77

ban structures, the only available option would be developing a 78

map render using e.g., WebGL [179] or OpenGL [180]. Several 79

other visualizations can be overlayed on a map context. Grids, 80

heatmaps, and choropleth maps are used to show aggregated 81

scalar data over different regions and may be implemented us- 82

ing Leaflet [181] and react-map-gl [182]. Contour maps are 83

popular for visualizing level sets of scalar functions such as 84

temperature or rain volumes and may implemented in urban vi- 85

sual analytics systems using Bertin [183] and geoplot [184]. 86

Movement data, such as wind data and human mobility, can be 87

represented using trajectory or vector fields visualizations, and 88

implemented using ipyleaflet [185] and MapTiler [186]. The 89

last approach to visualizing geographical data is to discard the 90

use of the map context. One of the most used techniques in this 91

class is the dorling cartogram, which may be developed using 92

Vega, Vega-Lite, or the Urban Toolkit [2]. 93

Abstract. Other primary visualization types in urban data 94

analysis are abstract charts. This type of visual representation 95

covers a wide variety of visualizations that range from classic 96

statistic charts to graphical representations of non-visual com- 97

plex data such as text and sound. Abstract visualizations also 98

include designs to represent multivariate data, such as radar 99

and parallel coordinate charts. Statistics charts are some of 100

the most well-known types of visualization. Bar charts, his- 101

tograms, scatterplots, line charts, and box plots, among oth- 102

ers, are mandatory for building effective urban visual analytics 103

applications. There are several tool choices for implementing 104

statistical charts. Common approaches include charts libraries 105

such as Chart.js [166], FusionCharts [187], or Highcharts [188]. 106

In situations where custom charts are required, an effective ap- 107

proach is to adopt visualization tools built over the concept of 108

Grammar of Graphics [189], such as ggplot2, and Vega-Lite, 109

which provide high flexibility without requiring low-level cod- 110

ing. When low-level coding control is desired, the most estab- 111

lished approach is using D3. Abstract visualizations are not 112
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Fig. 10. Reviewed construction tools and their support for different visualizations. The tools are sorted from low-level libraries (e.g., D3) to higher-level
template-based tools (e.g., Power BI).

only restricted to statistic charts. Some complex data, such1

as text and sound, are also visualized using this approach. In2

fact, texts are commonly represented using word clouds, while3

sounds are usually shown using spectrograms. These visual-4

izations can also be constructed using predefined visualizations5

from libraries such as ZingChart [190] and ECharts [191], vi-6

sualization grammars from toolkits such as Vega-Lite, and low-7

level D3 coding. Finally, in the context of urban visual ana-8

lytics, datasets are complex and usually composed of multiple9

attributes. The visualization of multivariate data can be ap-10

proached using several strategies such as parallel coordinates11

and polar coordinates. The implementation of these visualiza-12

tions can be performed using the same tools as the previously13

cited abstract charts.14

Temporal. Most urban data describe events or phenomena that15

occur over time. For this reason, it is important to build vi-16

sual representations such as time series, timelines, and stream-17

graphs. The same scenario observed in abstract visualizations18

is also valid for temporal visualizations. More precisely, these19

visualizations can be developed using low-level tools (We-20

bGL and D3), visualization toolkits based on the grammar of21

graphics (ggplot2 and Vega), specific purpose libraries (Fusion-22

Charts [187] and Bokeh [192]), and standalone visual analytics23

applications (Tableau [164] and Amazon Quicksight [193]).24

Network. Urban data visualization heavily explores the rela-25

tional and hierarchical nature of geographic regions, time res-26

olutions, and other data. In fact, multi-resolution analysis is 27

a powerful visual exploration strategy associated with the fa- 28

mous Shneiderman’s visualization mantra overview first zoom 29

and filter, then details-on-demand [194]. Among the most pop- 30

ular network data visualization strategies, we can cite node-link, 31

chord and tree (dendogram) diagrams, as well as, treemaps, and 32

sunburst charts. Network visualization can be implemented us- 33

ing tools from all abstraction levels: low-level libraries (WebGL 34

and D3), grammar-based toolkits (Protovis [195] and Vega- 35

Lite), chart-specific libraries (ECharts and apexcharts [196]) 36

and visualization systems (Microsoft Power BI [197] and Ama- 37

zon Quicksight [193]). 38

Tailored. Finally, some data has specific aspects that may re- 39

quire using particular visual designs. In this case, low-level and 40

grammar-based approaches are the only available options and 41

should be chosen from case to case. In fact, WebGL, D3 and 42

Vega-Lite are currently the most popular options available. 43

7. Discussion 44

In this section, we discuss future research opportunities from 45

the surveyed urban visual analytics and construction tools dis- 46

cussed in Sections 5 and 6. Our discussion is framed along the 47

same previously mentioned discussions: visualization, analyt- 48

ics, data, and system. 49
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7.1. Visualization1

Visualization metaphors. An interesting observation from our2

survey is that there appears to be a set of “standard” visualiza-3

tions: most systems use combinations of thematic maps (e.g.,4

choropleth maps and heatmaps) and widely used non-spatial5

visualizations, such as bar charts, scatterplots, and line charts6

(as seen in Figures. 4, 6, and 8). One possible explanation for7

this pattern is the fact that urban visual analytics systems are, in8

general, intended to be used by domain experts with varying de-9

grees of visualization and data analysis literacy. Therefore, one10

important design decision is to employ known visual metaphors11

to assemble a visualization system. Also related to this is the12

fact that these visual metaphors are implemented in the vast ma-13

jority (if not all) of the construction tools and, therefore, are eas-14

ily included in visualization systems. On the other hand, more15

complex visualizations, such as parallel coordinated charts, vi-16

olin charts and spectrograms are less common and typically17

found in advanced technical applications designed for users18

with a robust background in visualization and data analytics.19

These visual metaphors are not universally present in construc-20

tion tools like the previous ones. Finally, tailored visualiza-21

tions, although often necessary for more domain-specific sce-22

narios, are present in a smaller fraction of the surveyed works.23

By their own nature, these visual metaphors require tools that24

provide more freedom (e.g., low-level tools) or allow for cus-25

tomization and integration of multiple visualization techniques26

for their implementation. Consequently, creating tailored vi-27

sualizations to meet specific domain needs involves navigating28

the trade-offs between using preexisting libraries, which offer29

speed and simplicity, and writing custom code, which, while30

more time-consuming, provides the necessary flexibility for in-31

tegrating multiple visualization techniques and crafting novel32

visual metaphors.33

Use of 2D and 3D maps. The majority of surveyed urban vi-34

sualization systems predominantly use 2D maps as a visual35

metaphor to convey the spatial aspect of urban data. Most of the36

construction tools support the generation of 2D maps. It is im-37

portant to note that the degree of customization available varies38

significantly with the choice of construction tool: high-level39

tools tend to support standard thematic maps, while low-level40

tools enable the creation of tailored map designs, often neces-41

sitating programming. Yet, given that urban environments are42

intrinsically three-dimensional, more sophisticated application43

scenarios necessitate the analysis of both physical and thematic44

urban data in 3D [23]. Unlike their 2D counterparts, 3D maps45

are rarely supported by construction tools. Furthermore, most46

of the tools that do support 3D maps often focus on the render-47

ing of the city’s physical aspects (buildings, streets, trees, etc.)48

and provide limited capabilities related to the transformation49

and visual analysis of 3D thematic data. Many aspects of visual50

analytics system design are much more complex in 3D envi-51

ronments. In fact, elements such as navigation, occlusion, and52

the interactions of these with the visual metaphors for thematic53

data related to different physical aspects (buildings, streets, etc.)54

are still open problems [198]. For these reasons, most of the55

surveyed systems that use 3D maps rely on low-level construc-56

tion tools such as WebGL or OpenGL. All of this underscores57

a pressing need for better construction tools that facilitate the 58

implementation and customization of data visualizations within 59

3D urban environments. 60

7.2. Analytics 61

Analytical tasks. Since most urban datasets describe phenom- 62

ena and events observed in cities and throughout a period of 63

time, it is natural to expect that most surveyed systems sup- 64

port spatial & temporal analytic tasks. In our review, we have 65

categorized the tasks into two groups: lower-level tasks and 66

urban-specific tasks. Tasks from the first group, which are com- 67

mon across various contexts, include essential functions such 68

as extracting patterns, distributions, clusters, outliers, and cor- 69

relations. These tasks are important for summarizing and de- 70

scribing datasets of interest. As shown in Figure 4, urban vi- 71

sual analytics systems rely on several visualizations to support 72

these tasks. Since these tasks are fundamental, they can be fa- 73

cilitated by several construction tools. For example, although 74

D3, Vega-Lite, and Tableau have very distinct characteristics, 75

all of them have capabilities for visualizations to support these 76

tasks. Finally, it is also worth mentioning that, although out of 77

the scope of this paper, several popular non-visualization tools 78

are commonly used to support analytical tasks, such as statisti- 79

cal and machine learning libraries (e.g., scipy [199] and scikit- 80

learn [200]). 81

The second group of tasks in urban visual analytics systems 82

are the urban-specific tasks. As shown in the domain category 83

in Section 5.4, these tasks are very specific and vary based on 84

the use cases. For instance, urban mobility systems like Mo- 85

biSeg [64] focus on analyzing movement patterns and integrat- 86

ing mobility data, while systems like MetroBUX [69] and TCE- 87

Vis [136] illustrate the need for tools that can manage specific, 88

high-variability datasets, such as traffic flows and bus arrival 89

times. In other realms, like urban planning, for example, sys- 90

tems such as IF-City [105] and Urban Mosaic [145] demon- 91

strate the importance of versatile tools that facilitate the simu- 92

lation of planning scenarios. Also, as shown in Figure 4, urban 93

visual analytics systems rely on a few visualization types to sup- 94

port urban-specific tasks. Given the complexity and specificity 95

of these tasks, just a few construction tools are available to sup- 96

port their implementation. For example, OSMnx [1] is a tool 97

created to retrieve, analyze, and visualize street networks. 98

7.3. Data 99

Availability. Although several relevant urban challenges can 100

benefit from urban visual analytics systems (Figure 6), most of 101

the surveyed works are related to transportation and mobility. 102

These applications are also the ones that rely on a wider range 103

of visualizations. While it is hard to fully justify this pattern, 104

one possible reason is the availability of public datasets. In fact, 105

many cities provide data related to taxi [15, 201] or bus [202] 106

trips, which have motivated the visualization community to ex- 107

plore the topic. Other topics, such as sunlight access, flooding 108

and landslide, and noise, may suffer from the lack of city-wide 109

public datasets, since they depend on custom sensors or com- 110

putationally intense simulations that are difficult to perform at 111
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scale. We note that such data may also require advanced visu-1

alization designs, such as volume rendering or vector field vi-2

sualization. The main source of data for cities’ physical layers3

is OpenStreetMap [203]. However, since the data is collabora-4

tively produced by a community of users, the quality and com-5

pleteness of the data might pose a problem [204]. The usage6

of this data also depends on tools to download, store, manage,7

and render the physical layers, which may be challenging. Re-8

cent work advancing the idea of urgent computing [205], where9

urban data also plays a key role, could offer pathways for new10

visualization research. Such integration between urgent com-11

puting and urban visual analytics can markedly improve cri-12

sis response capabilities by enabling real-time simulations that13

enhance disaster management strategies (e.g., severe weather14

events [206]).15

7.4. System16

System performance. A critical factor taken into account dur-17

ing the design of a visual analytics system is its computational18

performance. Previous work has shown that latency in interac-19

tive visualization systems can affect the data exploration pro-20

cess [207]. Several factors contribute to latency in interactive21

urban visual analytics systems: data processing, data transfor-22

mation and rendering. In the urban scenario, this issue is even23

more important given the common spatial operators to join and24

summarize thematic information with respect to the physical el-25

ements of the city [208]. Most construction tools focus on the26

visual elements and thus are either oblivious or abstract away27

the latency and performance issues from the users. In this case,28

either the user must accept latency when exploring reasonably29

large datasets or has to use separate data management solutions,30

which require expertise in programming and/or databases. A re-31

cent study [209] has proposed the use of machine learning mod-32

els to automatically optimize query plans for applications using33

Vega and a database management system. However, this work34

has not been validated with urban or spatial data in general.35

Developing generalizations of such approach to other grammar-36

based approaches that can effectively support urban data (such37

as the Urban Toolkit) is an interesting direction for research.38

Collaboration. As reported in Section 5.4, our analysis reveals39

that 50% of the surveyed works explicitly mention active col-40

laboration with domain experts to build the system require-41

ments. When these collaborations are documented, experts are42

often restricted to roles of data providers or evaluators rather43

than core contributors throughout the design and development44

process. This limited involvement could result in tools that are45

misaligned with the real-world operational demands of urban46

experts. We note, however, that experts’ contributions in the47

construction of urban visual analytics systems might be more48

prevalent than reported, indicating an oversight in reporting49

rather than a definitive lack of expert involvement. This un-50

certainty underscores the need for better clarity in the docu-51

mentation of collaborative efforts across studies. More detailed52

reporting on the nature and extent of the participation of do-53

main experts during the system construction phase is essential54

to better understand these cross-domain collaborations. Their55

deep involvement ensures that the tools developed are techni- 56

cally proficient and practically useful in real-world emergen- 57

cies. While collaborative visualization [210] offers opportuni- 58

ties to bring together domain experts to understand and investi- 59

gate data, a potential avenue for future research is the creation 60

of tools that facilitate the tracking of the collaborative system 61

design process itself. Given the complexity of building urban 62

visual analytics systems, early design commitments might lead 63

to challenges in adapting to unforeseen requirements or changes 64

in the collaborative landscape. Therefore, tools to track prelim- 65

inary visualization designs, workflows, and experiments could 66

significantly facilitate the tool-building process. 67

Availability. Construction tools like Tableau, Microsoft Power 68

BI, and ArcGIS provide robust sharing capabilities and in- 69

herently support the findability and accessibility aspects of 70

FAIR principles, thereby facilitating the reproducibility of re- 71

sults [211]. However, on the other end of the spectrum, low- 72

level construction tools (often used to build more customized 73

and complex systems), in general, do not have built-in capa- 74

bilities to support FAIR principles. This scenario often leaves 75

the burden of ensuring FAIR compliance on the developers. 76

This situation exacerbates the challenge of experimental repro- 77

ducibility, which frequently lags due to the complexities in- 78

volved in documenting processes and code [212]. This not only 79

renders comparative analysis challenging but also frequently 80

undermines the practical applicability of the data in alternate ur- 81

ban contexts. Systems based on visualization grammars present 82

a good balance in this aspect; however, the support for general 83

urban data is still limited. This scenario underscores the need 84

for approaches that can facilitate reproducibility and replicabil- 85

ity [213]. Developing strategies to enhance the FAIRness of 86

urban works while allowing for shareable and reproducing re- 87

sults represents a critical research avenue for the future and un- 88

derscores the importance of integrating these principles across 89

computational requirements, analysts’ needs, and developers’ 90

constraints to achieve practical and effective results [214]. 91

Integration. As shown in Figure 10, all visualizations used in 92

the surveyed works are supported by at least one construction 93

tool. However, other tools may be required to fully imple- 94

ment all data, analytics, and system requirements discussed 95

in Section 5.2. For example, complex datasets (e.g., Open- 96

StreetMap buildings or weather simulations) may require the 97

use of specific tools or libraries to load, clean, and parse them 98

into visualization-ready formats; complex analytical method- 99

ologies may require the use of open-source solutions [215, 216]. 100

While a comprehensive list of non-visualization tools are out of 101

the scope of this paper, it is important to note that combining 102

visualization and non-visualization tools is not straightforward. 103

Exploring new construction tools that facilitate the interoper- 104

ability and interaction between these may lead to a more com- 105

prehensive understanding and coverage of the design space per- 106

tinent to urban visual analytics. This exploration presents an 107

interesting research pathway. 108

As part of our survey, we have noticed a shift away from 109

client-only applications (built leveraging languages such as 110

C++ and libraries such as OpenGL), towards web-based ones. 111
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While facilitating deployment to users, the client-server nature1

of these systems raises new challenges on how to best integrate2

data, analytics, visualization, and system components. How-3

ever, recent works and technologies (e.g., Web Assembly, We-4

bGPU) have facilitated the integration of these components, al-5

leviating the need for Python or C++-based servers to handle6

data-intensive workloads. In turn, these have enabled the de-7

sign of a new class of construction tools, such as Mosaic [217].8

There are growing opportunities to leverage these new tech-9

nologies in urban visual analytics systems, especially for man-10

aging large datasets and enhancing rendering capabilities.11

8. Conclusions & takeaways12

In this paper, we have reviewed over 130 relevant systems to13

create a fine-grained taxonomy of over 160 tags in 22 categories14

covering visualization, analytics, data, and system dimensions.15

Such characterization allowed us to assess the most popular vi-16

sualizations, analytical tasks, data, and system features. These17

were then used to evaluate construction tools based on their ca-18

pabilities to implement different visualizations. From this work,19

there are a few key takeaways.20

First and foremost, few works in urban visual analytics are21

publicly available. This scarcity of availability is a contentious22

topic given potential privacy issues surrounding the datasets23

and the unrealistic expectations placed upon prototype devel-24

opments [218]. Despite these challenges, there is a compelling25

case for dedicating increased efforts towards the cultivation26

of communities centered on the development of urban frame-27

works. This is especially important given the potential soci-28

etal implications that urban visual analytics systems can har-29

bor. Ensuring transparency is key to fostering trust in data-30

driven decision-making processes. While the immediate ben-31

efits from the public dissemination of code may appear modest,32

there are certainly potential advantages. Reflecting on our ex-33

perience in the development of urban visual analytics systems,34

making some of our contributions publicly available led to new35

collaborations [219] and gained attention from various media36

outlets [220, 221].37

Second, echoing recent calls from the visual analytics com-38

munity [222], more effort should be dedicated to making inter-39

operable components and building sustainable infrastructures40

for urban visual analytics. As highlighted, an urban visual an-41

alytics system is the result of the integration of multiple com-42

ponents. Currently, time and effort are expended on redundant43

tasks and reinventing the wheel. Thoughtful design of com-44

ponents with reusability in mind can yield benefits both down-45

stream and upstream. Successful examples in urban computing,46

such as OSMnx [223], serve as guides that underscore the po-47

tential utility of components when designed with reusability as48

a core principle. Together with publicly available codes and in-49

teroperable components, visualization research outcomes might50

be more easily transferable to other geographical contexts, mul-51

tiplying the utility of a singular system. In doing so, urban ex-52

perts would be able to leverage existing urban visual analytics53

systems to address localized challenges without the necessity of54

developing an entirely new system from the ground up.55

Lastly, we found that the delineation of collaborations with 56

urban experts frequently lacks depth. Usually, these collabora- 57

tions are portrayed within the narrow confines of roles as data 58

providers and evaluators, rather than recognizing these experts 59

as essential contributors to the design process. This undervalues 60

the potential depth that urban experts can bring to the devel- 61

opment of visualization tools. In a domain where proficiency 62

in programming has become increasingly standard, we believe 63

that a more careful consideration of urban experts’ unique needs 64

and insights can be fruitful. Their already-in-place workflows 65

and perspectives can enrich the development process. Though 66

this is a topic that involves time commitment and expectations 67

from both sides (experts and visualization researchers) [224], 68

more meaningfully involving them in the design and imple- 69

mentation can enhance the utility and relevance of visualiza- 70

tion research, leading to greater acceptance and application of 71

research findings in urban contexts. 72

As part of future work, we see value in a more careful 73

evaluation of the sustainability of urban visual analytics tools. 74

This might require directly enquiring visualization researchers 75

and domain experts, assessing pain points and shortcomings of 76

these collaborations, and whether urban visual analytics sys- 77

tems and contributions were actually embedded into their do- 78

main practices. 79
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