

CAMP - RT
A Patient Similarity-Based Method for Predicting Radiation Dosage
in Head and Neck Radiation Oncology

Peter Hanula
UIN 660468116
Fall 2018

Advisor: G. Elisabeta Marai, PhD
Reader: Andrew E. Johnson, PhD

The University of Illinois at Chicago
Electronic Visualization Laboratory

Table of Contents:

ABSTRACT

1. INTRODUCTION

2. METHODS
2.1 Data

Data Integration
Data Processing

2.2 Algorithm: Structural SIMilarity (SSIM)
Dose Prediction

Implementation
2.3 Visual Analysis Tool

Main View
Dose Estimation View
Interaction

Implementation

3. EVALUATION AND RESULTS
3.1 Setup And Results
3.2 Domain Expert Feedback

4. DISCUSSION AND CONCLUSION
ACKNOWLEDGMENTS
REFERENCES

ABSTRACT

I present an automated method for computing the spatial similarity of tumor location with respect
to organs at risk between multiple head and neck cancer patients and ranking the patients
accordingly. I use this method and resulting metric to predict, for each patient, a radiation dose
distribution across organs in the head and neck. Furthermore, I go over the design and
implementation of a visual analysis tool used to help validate the method.

The method uses as input DICOM (Digital Imaging and Communications in Medicine) files [1]
provided by our collaborators at MD Anderson Cancer Center. We preprocess these files to
extract primary data components and translate them into an efficient format for the automated
method and web-based application to read in. The method is written in Python, and utilizes the
Structural SIMilarity (SSIM) [2] algorithm for computing similarities. A JSON (JavaScript Object
Notation) file [4] is generated containing all patients, and for every patient a dose prediction and
ordered list of most similar patients is produced. The web-based GUI (Graphical User Interface)
reads in the JSON file and lets users visually explore the data, analyze the method, and gather
insights for possible radiation therapy plans.

The resulting method and interface, CAMP-RT (Correlations Across Multiple Patients in
Radiation Therapy) is continuously being evaluated by domain experts from the MD Anderson
Cancer Center. I report their qualitative feedback regarding the method and interface. I further
evaluate quantitatively the results of the prediction using a dataset of 101 head-and-neck cancer
patients. The results indicate the method has good predictive capabilities.

1. INTRODUCTION

Radiation therapy is one of the most common treatments for cancer, using high-energy radiation
that can kill cancer cells and shrink tumors. However, the radiation can also damage normal
cells and organs, leading to various side effects. Some examples include dry mouth, mouth and
gum sores, difficulty swallowing, stiffness in the jaw, tooth decay, increased risk of stroke, and
peripheral neuropathy. Side effects develop when healthy organs are located in the radiation
field during radiation therapy. These organs are known as OARs (Organs At Risk). The goal of
the automated method that I am presenting is to allow radiologists to optimize the radiation
therapy plan in a shorter time frame, while minimizing pain and side effects to healthy organs at
risk.

2. METHODS
The method uses as input DICOM files provided by our collaborators at MD Anderson Cancer
Center. We preprocess these files to extract primary data components and translate them into
an efficient format for the automated method and web-based application to read in. The method
is written in Python, and utilizes the SSIM algorithm for computing similarities. A JSON file is
generated containing all patients, and for every patient a dose prediction and ordered list of
most similar patients is produced. The web-based GUI reads in the JSON file and lets users
visually explore the data, analyze the method, and gather insights for possible radiation therapy
plans. I describe below in more detail each component.

2.1 Data

Most of the patient data originates from DICOM files. Our collaborators at MD Anderson Cancer
Center extract only the necessary data components, which are then organized and shared with
us through a large group of CSV (Comma-Separated Values) files. This process naturally fits
into their workflow, and dramatically reduces file sizes. The current dataset contains 101
patients. Two CSV files are produced for every patient. The first file id_centroid_meandoses.csv
lists the patient’s organs and tumors with attributes mean, minimum, and max doses (GY),
along with the x, y, z coordinates and volume (cc). Each patient has data for around 50
organs in the head and neck regions, including the primary GTVp and secondary GTVn tumors
(Gross Tumor Volume). Doctors want to eliminate tumors while trying to avoid damage to
healthy organs at risk. Organs located closer to the tumors receive higher levels of radiation.

The second file id_distances.csv lists the organ to organ/tumor distances (mm) for every
possible pair combination.

Example of id_centroid_meandoses.csv

Example of id_distances.csv

Additional data is domain-specific implicit knowledge and meta-data located in our domain
experts’ heads. We extract and encode some of this data through multiple interactions with our
collaborators and repeated feedback sessions. For example, there is a laterality.csv file listing
the tumor laterality (left, right, bilateral) and tumor subsite (BOT, Tonsil, Soft Palate,
Pharyngeal Wall, GPS, NOS) of each patient. There is an additional clinical file listing 40
additional attributes for each patient, although our method only incorporates the total dose (GY)
attribute. The total dose corresponds to the total radiation a patient has received during
treatment, or will receive if treatment hasn’t started.

 Example of laterality.csv

Example of clinical CSV file

Furthermore, following discussions with our collaborators at MD Anderson Cancer Center, a
organAtlas.json file was created with a list of organs they are most interested in. The atlas
currently contains 47 organs, including the primary GTVp and secondary GTVn tumors. The
organs are partitioned into 6 groups: Oral Cavity & Jaw, Throat, Salivary Glands, Eyes,
Brainstem & Spinal Cord, and Other.

Example of organAtlas.json

Data Integration and Representation
The Python script starts by searching through the patients folder, returning a list of all the CSV
pathnames associated with the patients. The script then iterates through the list of files, reading
in and parsing one CSV file at a time. Since there are two CSV files associated with each
patient, a patient entry is either being created or updated. For each new patient encountered, a
OrderedDict Collection instance is returned to store the patient’s information, and then the
OrderedDict is appended to a list of patients. The ID and name can be retrieved from either file.
The program also assigns “internal” IDs to ensure each patient has a unique identifier. From
the id_centroid_meandoses.csv file, organ and tumor information is parsed and organized as a
OrderedDict of OrderedDicts, stored in the variable organData. Each organ and tumor contains
x, y, z, volume, meanDose, minDose, and maxDose attributes.

From the id_distances.csv file, two matrices are then created and populated, along with two
boolean variables hasGTVp and hasGTVn. These boolean variables are used internally when
populating data relating to tumors. The rows and columns of a matrix map to individual organs.
The size of the matrices depend on how many organs are included in the organ atlas, in this
case 47 x 47.

In the first matrix O_dists, each cell contains the organ to organ distance for that row, column
pair combination. The diagonal of the matrix is populated with 1’s. In the second matrix T_dists,
each cell of the diagonal contains the tumor to organ distance for that respective organ. The rest
of the cells are populated with 0’s.

Matrix structures for storing patient data. In practice, the matrices are scaled to a size of 47 x 47.

After all the individual patient files have been parsed, a third matrix is generated for each
patient, T_vol. The diagonal of the matrix is populated with the primary GTVp tumor volume,
and the remaining cells are populated with 0’s.

Then, a fourth matrix is generated for each patient, named P_dose, which relies on the total
dose attribute found in the clinical csv file. The file is read and parsed, the patient ID’s are cross
referenced with the patient data already stored, and then the patient data is updated with a new
attribute total_Dose. The diagonal of the fourth matrix is populated with the patient’s total dose,
and the remaining cells are populated with 0’s.

Finally, the laterality.csv file is read and parsed, the patient ID’s are cross referenced with the
patient data already stored, and then the patient data is updated with two new attributes
laterality and tumor_Subsite.

Data Processing
M_dists = O_dists � T_dists

M_vol = O_dists � T_vol

M_dose = O_dists � P_dose

The data needs to be processed before it can be ready for the similarity algorithm. The four
matrices produced are used to compute three new matrices. The distance matrix M_dists is
calculated by taking the dot product of O_dists and T_dists. The volume matrix M_vol is
calculated by taking the dot product of O_dists and T_vol. The dose matrix M_dose is
calculated by taking the dot product of O_dists and P_dose. With the way the four matrices are
structured and populated, taking the dot product distributes the right-hand matrix (T_dists,
T_vol, or P_dose) into the left-hand matrix (O_dists), resulting in similarity scores that cover a
greater range. The whole data pipeline for the 101 patients, from reading in the distributed data
sources to computing the dot products, executes on average in five seconds.

2.2 Algorithm: Structural SIMilarity (SSIM)

ssim_dists = SSIM (currP[‘M_dists’] , nextP[‘M_dists’])

ssim_vol = SSIM (currP[‘M_vol’] , nextP[‘M_vol’])

ssim_dose = SSIM (currP[‘M_dose’] , nextP[‘M_dose’])

score = (ssim_dists + ssim_vol + ssim_dose + laterality) / 4

The Structural SIMilarity index is a method for measuring the similarity between two images, in
our case matices. We are using a Matlab implementation of the algorithm [3], exported as a
Python package to work seamlessly with the current workflow. The Matlab code was modified to
accept matrices as input instead of image files.

In the Python script, the call to the SSIM algorithm sits inside a double for loop, where the outer
loop sets the current patient and the inner loop iterates through all the patients. The SSIM
algorithm is called three times when comparing the target patient to a particular patient,
computing ssim_dists, ssim_vol, and ssim_dose. A final score is determined by adding the
ssim_dists, ssim_vol, ssim_dose, and laterality values, and then normalizing the sum to a
common scale ranging from 0 to 1.

The inner loop iterates through all the patients and calculates the similarity scores for that set of
patients, appending the IDs and scores as tuples to a list. The list is sorted by the similarity
score. One iteration of the outer loop takes, on average, 10 seconds to execute. The ranking
order and similarity scores are extracted and stored in variables similarity_ssim and
scores_ssim, respectively. The patient’s data is updated to include these variables. The
process is then repeated for the remaining patients, set through the outer for loop.

similarity_ssim = [24, 44, 21, 35, 42, 25, 52, 11, …]

scores_ssim = [1.0, 0.989, 0.981, 0.961, 0.960, 0.951, 0.944, 0.922, …]

Example of data extracted for a certain patient.

Notice that radiation dose information per organs is not utilized in the similarity algorithm (just
the total dose a patient received or will receive). This was a deliberate choice. In a real use

case, the target patient would be a new patient who hasn’t started radiation therapy. The
amount of radiation a certain organ will potentially receive is not known at that point and it is
difficult to determine. The automated method was designed to use known or easily derived data
points to determine how similar two patients are, and then estimate new data points.

Our hypothesis is that the more similar two patients are, the more likely it is that they will receive
similar radiation therapy treatments. To test this hypothesis, we use the similarity method to
identify the five most similar patients for any given patient in our dataset. We then use the
known radiation dosage distribution across the five most similar patients to predict the radiation
dosage distribution (the amount of radiation per each organ) of the given patient. We validate
the prediction against the actual radiation dosage distribution for that patient.

Dose Prediction
Once all the similarity scores have been computed, dose predictions can be made. For each
patient, the top five most similar patients are used to predict a dose distribution across all
organs. Since these patients have already received radiation therapy, it is known what level of
radiation each organ has received. Currently the top five most similar patients are averaged on
a per organ basis to determine the predicted dose for that organ. The patient’s data is updated
to include the dose predictions.

Before the automated method finishes executing, it writes to disk the file differences.csv, where
each row corresponds to a patient. The columns consist of the patient’s ID, followed by the IDs
of the top five most similar patients, and then every organ difference. A organ difference for a
particular organ is determined by subtracting the predicted dose value by the actual dose value
received, and then taking the absolute value. This is possible because our patient dataset
consists of patients that all received radiation therapy treatment, so the actual dose values for
each organ is known. In the case where data is missing, the difference value defaults to “-1” and
the findings are reported to our collaborators. By comparing the predicted dose with the actual
dose, the automated method can be analyzed and validated. The differences.csv is used for
further statistical analysis and k-fold cross-validation. The goal of cross-validating the data is to
test the method’s ability to predict new data that was not used in estimating it.

Differences.csv [12]. The spreadsheet link can be found in the references section.

Further research in predicting the dose distribution is currently being conducted, and the
process will be refined in the following semesters.

Implementation
The automated method is written in Python v2.7.15 [5]. The numpy v1.15.4 module [6] is used
to represent each patient as a series of matrices for further data processing. The pySSIM v1.0
package was originally written in Matlab, and is used to compute a similarity score between two
patients. I exported the code as a Python module to seamlessly integrate with our workflow.
However, this requires the MATLAB Runtime [7] to be installed on the machine running the
Python script. The matlab v0.1 [8] module is used to bridge the pySSIM module and convert
data to the appropriate format. Module glob v2.5 [9] is used to find and return a list of all
relevant patient pathnames, while csv v2.3 [10] and json v2.6 [11] are used to import and export
files in the appropriate format. The Python script is executed using the command “python2.7
CAMPRTdata.py patients/”. “patients/” is a command-line argument specifying the folder
location where patient data is stored.

2.3 Visual Analysis Tool

The Python script described above generates a second file patients.json, which contains all the
patient data and is read in by the visual analysis tool. Before this JSON file is created the patient
data, a list of OrderedDicts, is cleaned. All matrices that have been created are deleted,
because these were only necessary when applying the similarity algorithm. With Python, a list of
OrderedDicts can simply be dumped to a JSON file where the data containers are properly
translated to JavaScript Object Notation. It’s as simple as calling “json.dump(patientList,
fileToWrite, indent=4)”.

The visual analysis tool also reads in organAtlas.json, using the listed organs to generate the
organ filter list and populate the scenes with 3D models of the organs. The 3D organ models
were extracted from a DICOM dataset using Slicer3D [13] and exported as vtk (XML format)
models [20]. The set of organ models is standardized across all patients read in by the
application.

Main View

When the web-application starts, the user is greeted with the above view. A default patient is
selected for analysis. Each block represents a patient, with organs of the head and neck
encoded as spheres and 3D models. In the view above, the user is looking at the right side of
each patient’s head. The selected patient is located at the front of the list of patients, in the
upper left corner. The rest of the patients are ordered by their similarity score compared to the
selected patient. In this case, Patient 5081 is the most similar to Patient 5078, followed by
Patient 10159, then Patient 215, etc. By default the top fifteen patients are shown. When you
scroll to the end, there are links to either show or hide five more patients. It is possible to “show”
all 101 patients and scroll through the entire list. The application handles fairly well because
only the patients in the window’s view are actually being rendered, optimizing overall
performance.

1) The user can select a target patient using the dropdown menu.
2) Pressing the button takes the user to the Dose Estimation view.

3) The color scale indicates the level of radiation a organ has received, measured in GY.
Hovering over the color scale shows the dose value mapped to that color. D3.js is used to color
encode the organs, mapping a range of radiation doses to the custom color scale.

4) A slider used to change the opacity of the 3D organ models.
5) Toggles the Organ List menu.
6) The Organ List menu. The list is dynamically created at runtime using the data stored in
organAtlas.json. The menu is used to either filter (hide) a single organ or an entire partition.

7) The patient’s name or ID.
8) The patient’s similarity score when compared to the target patient.
9) The total dose a patient received or will receive.
10) The volume of the primary GTVp tumor.
11) Tumor laterality and subsite.
12) A three.js 3D scene. Organs are represented two different ways, as 3D models and at the
centroid of each model as a sphere. Adjusting the opacity slider, a hybrid organ view can be set.
Spheres are used to minimize occlusion, allowing the user to see all data points and patterns
clearly. Models of organs are used to help distinguish between different organs and to keep the
overall structure of the head and neck intact. The opacity level of the models tend to depend on
the user task at hand. A patient’s organs are spatially mapped to the 3D scene, and each
patient can be rotated to get a better look at the data. Tumors are only represented as spheres,
because models can not be obtained. The spheres are slightly larger than the spheres
representing organs, and the black outline is thicker. If a patient has both a primary GTVp tumor
and secondary GTVn tumor, a solid black edge is placed between the two.
13) A orientation cube, to aid in determining what side of the head is being viewed. Currently the
right side of the head is being viewed.

Dose Estimation View

In the Dose Estimation view, the top five most similar patients are averaged to provide a dose
distribution prediction for the target patient. In this view, the dose prediction for a organ can be
compared to the actual radiation dose applied to that organ. An additional patient view is
created to highlight the differences between the predicted and actual values. Users can use this
view to validate the current similarity method.

14) The target patient from the main view is also presented in the Dose Estimation view.
15) The top five most similar patients are averaged to create the Estimation view.
16) A third view of the selected patient, highlighting the differences between the predicted and
actual doses.
17) The color scale used to amplify the differences, making them easier to observe.

18) A multi line chart, showing the data that goes into the prediction. In the main application
view, organs are represented as spheres and models. Here, each organ is represented as a
line. Furthermore, in the main view the color of the sphere and model correlates to the radiation

dose received. Here, the height of the line maps to the radiation dose received. The y axis plots
the radiation dose. The x axis holds the estimation, followed by the top five most similar patients
compared to the selected patient. The Estimation view of the patient in the top row corresponds
to “0: Estimation” on the x axis. The chart can be used to observe trends or anomalies in the top
five most similar patients.

Interaction

Details on demand.

As mentioned earlier, hovering over the color scale shows the dose value mapped to that
particular color.

Linked Views plus details on demand.

Hovering over a sphere, details about the respective organ appear. Information shown includes
the name of the organ, mean radiation dose received, volume, dose per volume, minimum
radiation dose received, and maximum radiation dose received. The patient views are also
linked. Hovering over a organ highlights that organ across all patients.

Linked Views. Rotation.

The patient views are further linked through rotation. Rotating one patient syncs the rotation
across all patients. Consistent views of the patients ensure appropriate observations can be
made.

Linked Views. Opacity.

Adjusting the opacity slider changes the opacity of the 3D organ models. The patient views are
further linked through opacity. Decreasing the opacity makes it easier to understand the
structure of the head and neck, and the individual organs. Increasing the opacity allows users to
view the radiation doses across all organs without having to rotate the scene.

Linked Views. Filtering Organs.

It is possible to filter organs from the scene. Filtering of the organs is linked across all patients.
Organs can be filtered individually or by partition. In the above, the Oral Cavity & Jaw partition is
filtered out.

Linked Views across different encodings. Details on Demand.

In the Dose Estimation view, all the visual encodings are linked. Hovering over a line in the chart
highlights the respective organ (sphere) across the top views. Hovering over a line also reveals
the name of the organ, along with the radiation dose the organ received for the patient closest to
the mouse position.

Linked Views across different encodings. Details on demand. Filtering organs.

The thicker outline of the spheres representing tumors makes
them easier to see when highlighted.

In the previous view the user was hovering over a line in the chart. In this view, the user is
hovering over a sphere. Again, all the visual encodings are linked. Hovering over a sphere
highlights the respective sphere across all the top views, and highlights the respective organ
(line) in the multi line chart. Filtering of the organs is also linked across all encodings.

Details on demand.

Just like with the other color scale, hovering over this color scale shows the dose value mapped
to that particular color.

Implementation
The visual analysis tool was developed with web technologies JavaScript [14][15], HTML5 [16],
and CSS3 [16]. The web-application was tested using the Chrome v70 web browser [17].
Three.js r84 [18] is a JavaScript 3D library, and is used to spatially render and interact with each
patient and organs of interest. D3.js v5.7 [19] is a JavaScript library for manipulating documents
based on data. I use D3 to create and render a multi-line chart, map custom color scales to
dose values, and read in JSON files.

3. EVALUATION AND RESULTS
I evaluate quantitatively the results of the prediction using a dataset of 101 head-and-neck
cancer patients. I further report qualitative feedback from our collaborators regarding the
method and interface.

3.1 Quantitative Evaluation
Our hypothesis is that the more similar two patients are under the developed similarity method
and metric, the more likely it is that those patients will receive similar radiation therapy
treatments. To test this hypothesis, we use an existing dataset of 101 head-and-neck cancer
patients.

For each patient in this dataset, we first use the similarity method to identify the five most similar
patients to the given patient. We then use the known radiation dosage across the five most
similar patients to predict the radiation dosage distribution (the amount of radiation per each
organ) of the given patient. We validate the prediction against the actual radiation dosage
distribution for that patient.

As discussed above in the Dose Prediction section, the Python script writes to disk the file
differences.csv. The columns consist of the patient’s ID, followed by the IDs of the top five most
similar patients, and then every organ difference. Two additional columns are created at the
end, “Sum” and “Average”. The “Sum” column calculates the sum of all the organ differences for
a particular patient. The “Average” column calculates the average organ difference for a
particular patient. The differences.csv file is used to evaluate quantitatively the results of the
predictions and for k-fold cross-validation. The goal of cross-validating the data is to test the
method’s ability to predict new data that was not used in estimating it. We are in the very early
stages of applying k-fold cross-validation. Below are some findings from our preliminary
evaluation, which were presented to our collaborators.

Looking at the “Average” column, 24 patients have an average difference dose greater than or
equal to 8 GY, while 77 patients fall below this value. We examined the 24 patients using the
visual analysis tool, gathering any insights that might explain the high averages. Some recurring
themes were observed. 9 patients do not have a primary GTVp tumor, or the data is missing.
This means proper similarity scores could not be computed which could account for the high
averages. For 10 patients, either the target patient or a patient used for the prediction is a
special case where radiation is only applied to one side of the head, skewing the final dose
distribution prediction. The current similarity algorithm can't detect these special cases, and
development is underway to achieve this functionality. 4 patients are above the 8 GY value for
reasons currently not known, but for these patients the organs in the throat partition are either
highly overestimated or highly underestimated when compared to the actual radiation dose
values. This would be interesting to explore further. For 1 patient, the similarity scores for the
top five most similar patients are relatively low, which can help explain why the average
difference dose is larger.

3.2 Domain Expert Qualitative Feedback
To evaluate our interface, we have collected qualitative feedback from four radiation oncologists
at MD Anderson, and have demonstrated the interface to larger groups of oncologists at the UIC
Cancer Center, at the John Theurer Cancer Center, and at a computational pathology meeting
in Shonan, Japan. The feedback was uniformly enthusiastic. Domain experts have repeatedly
commented on how intuitive the 3D views were to understand the radiation dosage distribution
similarity across patients. During repeated evaluation sessions, our collaborators were
furthermore able to identify outliers in the data and a few instances of defective data, which
further testifies to the value of this tool.

4. DISCUSSION AND CONCLUSION

The automated method and visual analysis tool have undergone many iterations, which
correlated closely to the type and amount of data provided by our collaborators. There was once
a time where we were manually extracting data components from DICOM files, before the
workflow across collaborators was streamlined. As another example, the first iteration of the
visual analysis tool only contained 2D views of the patients, because the exact locations of
organs were not known and each patient only had around ten organs associated with them.
When we received more data, and each patient had around fifty organs associated with them,
the visual encodings had to be updated to allow for effective visual analysis.

The current iteration can be thought of as a Beta release. We are getting consistent and
promising results, but this is an ongoing research project that will be taken further.

ACKNOWLEDGMENTS
I thank my advisor, and our collaborators at MD Anderson Cancer Center, at University of Iowa,
and at University of Minnesota. I thank Timothy Luciani for his help with the similarity method
and algorithm, and the entire Electronic Visualization Laboratory for their help and support. I
thank Andrew Johnson for reading and commenting on this report. CAMP-RT is part of the
larger E-Radiomics in Precision Medicine project. This research is supported by NIH R01
NCI-R01CA2251.

REFERENCES

1. Medical Imaging & Technology Alliance, DICOM Standard PS3.1 2018e, 2018.
https://www.dicomstandard.org/current/

2. Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment:
From error visibility to structural similarity," IEEE Transactions on Image Processing, vol.
13, no. 4, pp. 600-612, Apr. 2004.

3. Matlab implementation of SSIM method
https://github.com/josejuansanchez/ssim

4. ECMA International,The JSON Data Interchange Format 2nd Edition,
France, 2017. https://www.ecma-international.org/publications/standards/Ecma-404.htm

5. G. van Rossum and F.L. Drake (eds), Python Reference Manual,
PythonLabs, Virginia, USA, 2001. Available at http://www.python.org

6. Numpy v1.15.4
https://github.com/numpy/numpy

7. MATLAB Runtime
https://www.mathworks.com/products/compiler/matlab-runtime.html

8. MATLAB Arrays in Python
https://www.mathworks.com/help/compiler_sdk/python/use-matlab-arrays-in-python.html

9. Python “glob” Module
https://docs.python.org/2/library/glob.html

10. Python “csv” Module
https://docs.python.org/2/library/csv.html

11. Python “json” Module
https://docs.python.org/2/library/json.html

12. differences.csv
https://docs.google.com/spreadsheets/d/1sJ6e-6i7owP6hos5PpvUbccqrA6P6X_nTI9kRs
f2jAM/edit?usp=sharing

https://www.dicomstandard.org/current/
https://github.com/josejuansanchez/ssim
https://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.python.org/
https://github.com/numpy/numpy
https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/help/compiler_sdk/python/use-matlab-arrays-in-python.html
https://docs.python.org/2/library/glob.html
https://docs.python.org/2/library/csv.html
https://docs.python.org/2/library/json.html
https://docs.google.com/spreadsheets/d/1sJ6e-6i7owP6hos5PpvUbccqrA6P6X_nTI9kRsf2jAM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1sJ6e-6i7owP6hos5PpvUbccqrA6P6X_nTI9kRsf2jAM/edit?usp=sharing

13. Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J-C., Pujol S., Bauer
C., Jennings D., Fennessy F.M., Sonka M., Buatti J., Aylward S.R., Miller J.V., Pieper S.,
Kikinis R. 3D Slicer as an Image Computing Platform for the Quantitative Imaging
Network. Magn Reson Imaging. 2012 Nov;30(9):1323-41. PMID: 22770690. PMCID:
PMC3466397. https://www.slicer.org/

14. ECMA International, ECMAScript® 2018 Language Specification 9th Edition,
France, 2018. https://www.ecma-international.org/publications/standards/Ecma-262.htm

15. Brendan Eich, JavaScript, 1995.
https://www.javascript.com/

16. W3C, HTML & CSS, USA, 2016.
https://www.w3.org/standards/webdesign/htmlcss

17. Google Chrome Web Browser
https://www.google.com/chrome/browser/

18. Ricardo Cabello, Three.js r84 JS Library, 2017.
https://threejs.org/

19. Mike Bostock, D3.js r5.7 JS Library, 2018.
https://d3js.org/

20. Schroeder, Will; Martin, Ken; Lorensen, Bill (2006), The Visualization Toolkit (4th ed.),
Kitware, ISBN 978-1-930934-19-1

https://www.slicer.org/
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.javascript.com/
https://www.w3.org/standards/webdesign/htmlcss
https://www.google.com/chrome/browser/
https://threejs.org/
https://d3js.org/

