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ABSTRACT 
 
I present an automated method for computing the spatial similarity of tumor location with respect               
to organs at risk between multiple head and neck cancer patients and ranking the patients               
accordingly. I use this method and resulting metric to predict, for each patient, a radiation dose                
distribution across organs in the head and neck. Furthermore, I go over the design and               
implementation of a visual analysis tool used to help validate the method. 
 
The method uses as input DICOM (Digital Imaging and Communications in Medicine) files [1]              
provided by our collaborators at MD Anderson Cancer Center. We preprocess these files to              
extract primary data components and translate them into an efficient format for the automated              
method and web-based application to read in. The method is written in Python, and utilizes the                
Structural SIMilarity (SSIM) [2] algorithm for computing similarities. A JSON (JavaScript Object            
Notation) file [4] is generated containing all patients, and for every patient a dose prediction and                
ordered list of most similar patients is produced. The web-based GUI (Graphical User Interface)              
reads in the JSON file and lets users visually explore the data, analyze the method, and gather                 
insights for possible radiation therapy plans. 
 
The resulting method and interface, CAMP-RT (Correlations Across Multiple Patients in           
Radiation Therapy) is continuously being evaluated by domain experts from the MD Anderson             
Cancer Center. I report their qualitative feedback regarding the method and interface. I further              
evaluate quantitatively the results of the prediction using a dataset of 101 head-and-neck cancer              
patients. The results indicate the method has good predictive capabilities. 
 

 

 

 

 
 

 



 

1. INTRODUCTION 
 
Radiation therapy is one of the most common treatments for cancer, using high-energy radiation              
that can kill cancer cells and shrink tumors. However, the radiation can also damage normal               
cells and organs, leading to various side effects. Some examples include dry mouth, mouth and               
gum sores, difficulty swallowing, stiffness in the jaw, tooth decay, increased risk of stroke, and               
peripheral neuropathy. Side effects develop when healthy organs are located in the radiation             
field during radiation therapy. These organs are known as OARs (Organs At Risk). The goal of                
the automated method that I am presenting is to allow radiologists to optimize the radiation               
therapy plan in a shorter time frame, while minimizing pain and side effects to healthy organs at                 
risk. 
 
 

2. METHODS 
The method uses as input DICOM files provided by our collaborators at MD Anderson Cancer               
Center. We preprocess these files to extract primary data components and translate them into              
an efficient format for the automated method and web-based application to read in. The method               
is written in Python, and utilizes the SSIM algorithm for computing similarities. A JSON file is                
generated containing all patients, and for every patient a dose prediction and ordered list of               
most similar patients is produced. The web-based GUI reads in the JSON file and lets users                
visually explore the data, analyze the method, and gather insights for possible radiation therapy              
plans. I describe below in more detail each component. 
 

2.1 Data 
 
Most of the patient data originates from DICOM files. Our collaborators at MD Anderson Cancer               
Center extract only the necessary data components, which are then organized and shared with              
us through a large group of CSV (Comma-Separated Values) files. This process naturally fits              
into their workflow, and dramatically reduces file sizes. The current dataset contains 101             
patients. Two CSV files are produced for every patient. The first file id_centroid_meandoses.csv             
lists the patient’s organs and tumors with attributes mean, minimum, and max doses (GY),              
along with the x, y, z coordinates and volume (cc). Each patient has data for around 50                 
organs in the head and neck regions, including the primary GTVp and secondary GTVn tumors               
(Gross Tumor Volume). Doctors want to eliminate tumors while trying to avoid damage to              
healthy organs at risk. Organs located closer to the tumors receive higher levels of radiation.               

 



 

The second file id_distances.csv lists the organ to organ/tumor distances (mm) for every             
possible pair combination. 
 

 
Example of id_centroid_meandoses.csv 

 
 

 
Example of id_distances.csv 

 
Additional data is domain-specific implicit knowledge and meta-data located in our domain            
experts’ heads. We extract and encode some of this data through multiple interactions with our               
collaborators and repeated feedback sessions. For example, there is a laterality.csv file listing             
the tumor laterality (left, right, bilateral) and tumor subsite (BOT, Tonsil, Soft Palate,             
Pharyngeal Wall, GPS, NOS) of each patient. There is an additional clinical file listing 40               
additional attributes for each patient, although our method only incorporates the total dose (GY)              
attribute. The total dose corresponds to the total radiation a patient has received during              
treatment, or will receive if treatment hasn’t started. 
 

 



 

 
                                                    Example of laterality.csv 

 
 

 
Example of clinical CSV file 

 
Furthermore, following discussions with our collaborators at MD Anderson Cancer Center, a            
organAtlas.json file was created with a list of organs they are most interested in. The atlas                
currently contains 47 organs, including the primary GTVp and secondary GTVn tumors. The             
organs are partitioned into 6 groups: Oral Cavity & Jaw, Throat, Salivary Glands, Eyes,              
Brainstem & Spinal Cord, and Other.  
 

 



 

 
Example of organAtlas.json 

 

Data Integration and Representation 
The Python script starts by searching through the patients folder, returning a list of all the CSV                 
pathnames associated with the patients. The script then iterates through the list of files, reading               
in and parsing one CSV file at a time. Since there are two CSV files associated with each                  
patient, a patient entry is either being created or updated. For each new patient encountered, a                
OrderedDict Collection instance is returned to store the patient’s information, and then the             
OrderedDict is appended to a list of patients. The ID and name can be retrieved from either file.                  
The program also assigns “internal” IDs to ensure each patient has a unique identifier. From               
the id_centroid_meandoses.csv file, organ and tumor information is parsed and organized as a             
OrderedDict of OrderedDicts, stored in the variable organData. Each organ and tumor contains             
x, y, z, volume, meanDose, minDose, and maxDose attributes.  
 
From the id_distances.csv file, two matrices are then created and populated, along with two              
boolean variables hasGTVp and hasGTVn. These boolean variables are used internally when            
populating data relating to tumors. The rows and columns of a matrix map to individual organs.                
The size of the matrices depend on how many organs are included in the organ atlas, in this                  
case 47 x 47. 
 

 



 

In the first matrix O_dists, each cell contains the organ to organ distance for that row, column                 
pair combination. The diagonal of the matrix is populated with 1’s. In the second matrix T_dists,                
each cell of the diagonal contains the tumor to organ distance for that respective organ. The rest                 
of the cells are populated with 0’s. 

 

 
Matrix structures for storing patient data. In practice, the matrices are scaled to a size of 47 x 47. 

 
 
After all the individual patient files have been parsed, a third matrix is generated for each                
patient, T_vol. The diagonal of the matrix is populated with the primary GTVp tumor volume,               
and the remaining cells are populated with 0’s. 
 

 



 

Then, a fourth matrix is generated for each patient, named P_dose, which relies on the total                
dose attribute found in the clinical csv file. The file is read and parsed, the patient ID’s are cross                   
referenced with the patient data already stored, and then the patient data is updated with a new                 
attribute total_Dose. The diagonal of the fourth matrix is populated with the patient’s total dose,               
and the remaining cells are populated with 0’s. 
 
Finally, the laterality.csv file is read and parsed, the patient ID’s are cross referenced with the                
patient data already stored, and then the patient data is updated with two new attributes               
laterality and tumor_Subsite.  
 

Data Processing 
M_dists   =   O_dists   �   T_dists 

 
M_vol   =   O_dists   �   T_vol 

 
M_dose   =   O_dists   �   P_dose 

 
 
The data needs to be processed before it can be ready for the similarity algorithm. The four                 
matrices produced are used to compute three new matrices. The distance matrix M_dists is              
calculated by taking the dot product of O_dists and T_dists. The volume matrix M_vol is               
calculated by taking the dot product of O_dists and T_vol. The dose matrix M_dose is               
calculated by taking the dot product of O_dists and P_dose. With the way the four matrices are                 
structured and populated, taking the dot product distributes the right-hand matrix (T_dists,            
T_vol, or P_dose) into the left-hand matrix (O_dists), resulting in similarity scores that cover a               
greater range. The whole data pipeline for the 101 patients, from reading in the distributed data                
sources to computing the dot products, executes on average in five seconds. 
 

 

 

 
 
 

 



 

2.2 Algorithm: Structural SIMilarity (SSIM) 
 

ssim_dists   =   SSIM (   currP[‘M_dists’]   ,   nextP[‘M_dists’]   ) 
 

ssim_vol   =   SSIM (   currP[‘M_vol’]   ,   nextP[‘M_vol’]   ) 
 

ssim_dose   =   SSIM (   currP[‘M_dose’]   ,   nextP[‘M_dose’]   ) 
 
 

 
score   =   (   ssim_dists   +   ssim_vol   +   ssim_dose   +   laterality   )   /   4 

 
 
The Structural SIMilarity index is a method for measuring the similarity between two images, in               
our case matices. We are using a Matlab implementation of the algorithm [3], exported as a                
Python package to work seamlessly with the current workflow. The Matlab code was modified to               
accept matrices as input instead of image files.  
 
In the Python script, the call to the SSIM algorithm sits inside a double for loop, where the outer                   
loop sets the current patient and the inner loop iterates through all the patients. The SSIM                
algorithm is called three times when comparing the target patient to a particular patient,              
computing ssim_dists, ssim_vol, and ssim_dose. A final score is determined by adding the             
ssim_dists, ssim_vol, ssim_dose, and laterality values, and then normalizing the sum to a             
common scale ranging from 0 to 1. 
 
The inner loop iterates through all the patients and calculates the similarity scores for that set of                 
patients, appending the IDs and scores as tuples to a list. The list is sorted by the similarity                  
score. One iteration of the outer loop takes, on average, 10 seconds to execute. The ranking                
order and similarity scores are extracted and stored in variables similarity_ssim and            
scores_ssim, respectively. The patient’s data is updated to include these variables. The            
process is then repeated for the remaining patients, set through the outer for loop. 
 

similarity_ssim      =      [   24,      44,      21,      35,      42,      25,      52,      11, …  ] 
 

scores_ssim          =      [  1.0, 0.989, 0.981, 0.961, 0.960, 0.951, 0.944, 0.922, …  ] 
 

Example of data extracted for a certain patient. 
 
 
Notice that radiation dose information per organs is not utilized in the similarity algorithm (just               
the total dose a patient received or will receive). This was a deliberate choice. In a real use                  

 



 

case, the target patient would be a new patient who hasn’t started radiation therapy. The               
amount of radiation a certain organ will potentially receive is not known at that point and it is                  
difficult to determine. The automated method was designed to use known or easily derived data               
points to determine how similar two patients are, and then estimate new data points.  
 
Our hypothesis is that the more similar two patients are, the more likely it is that they will receive                   
similar radiation therapy treatments. To test this hypothesis, we use the similarity method to              
identify the five most similar patients for any given patient in our dataset. We then use the                 
known radiation dosage distribution across the five most similar patients to predict the radiation              
dosage distribution (the amount of radiation per each organ) of the given patient. We validate               
the prediction against the actual radiation dosage distribution for that patient. 
 

Dose Prediction 
Once all the similarity scores have been computed, dose predictions can be made. For each               
patient, the top five most similar patients are used to predict a dose distribution across all                
organs. Since these patients have already received radiation therapy, it is known what level of               
radiation each organ has received. Currently the top five most similar patients are averaged on               
a per organ basis to determine the predicted dose for that organ. The patient’s data is updated                 
to include the dose predictions. 
 
Before the automated method finishes executing, it writes to disk the file differences.csv, where              
each row corresponds to a patient. The columns consist of the patient’s ID, followed by the IDs                 
of the top five most similar patients, and then every organ difference. A organ difference for a                 
particular organ is determined by subtracting the predicted dose value by the actual dose value               
received, and then taking the absolute value. This is possible because our patient dataset              
consists of patients that all received radiation therapy treatment, so the actual dose values for               
each organ is known. In the case where data is missing, the difference value defaults to “-1” and                  
the findings are reported to our collaborators. By comparing the predicted dose with the actual               
dose, the automated method can be analyzed and validated. The differences.csv is used for              
further statistical analysis and k-fold cross-validation. The goal of cross-validating the data is to              
test the method’s ability to predict new data that was not used in estimating it. 
 

 



 

 
Differences.csv [12]. The spreadsheet link can be found in the references section. 

 
Further research in predicting the dose distribution is currently being conducted, and the             
process will be refined in the following semesters. 
 

Implementation 
The automated method is written in Python v2.7.15 [5]. The numpy v1.15.4 module [6] is used                
to represent each patient as a series of matrices for further data processing. The pySSIM v1.0                
package was originally written in Matlab, and is used to compute a similarity score between two                
patients. I exported the code as a Python module to seamlessly integrate with our workflow.               
However, this requires the MATLAB Runtime [7] to be installed on the machine running the               
Python script. The matlab v0.1 [8] module is used to bridge the pySSIM module and convert                
data to the appropriate format. Module glob v2.5 [9] is used to find and return a list of all                   
relevant patient pathnames, while csv v2.3 [10] and json v2.6 [11] are used to import and export                 
files in the appropriate format. The Python script is executed using the command “python2.7              
CAMPRTdata.py patients/”. “patients/” is a command-line argument specifying the folder          
location where patient data is stored. 
 
 

2.3 Visual Analysis Tool 
 
The Python script described above generates a second file patients.json, which contains all the              
patient data and is read in by the visual analysis tool. Before this JSON file is created the patient                   
data, a list of OrderedDicts, is cleaned. All matrices that have been created are deleted,               
because these were only necessary when applying the similarity algorithm. With Python, a list of               
OrderedDicts can simply be dumped to a JSON file where the data containers are properly               
translated to JavaScript Object Notation. It’s as simple as calling “json.dump(patientList,           
fileToWrite, indent=4)”. 

 



 

The visual analysis tool also reads in organAtlas.json, using the listed organs to generate the               
organ filter list and populate the scenes with 3D models of the organs. The 3D organ models                 
were extracted from a DICOM dataset using Slicer3D [13] and exported as vtk (XML format)               
models [20]. The set of organ models is standardized across all patients read in by the                
application. 
 

Main View 

 
 
When the web-application starts, the user is greeted with the above view. A default patient is                
selected for analysis. Each block represents a patient, with organs of the head and neck               
encoded as spheres and 3D models. In the view above, the user is looking at the right side of                   
each patient’s head. The selected patient is located at the front of the list of patients, in the                  
upper left corner. The rest of the patients are ordered by their similarity score compared to the                 
selected patient. In this case, Patient 5081 is the most similar to Patient 5078, followed by                
Patient 10159, then Patient 215, etc. By default the top fifteen patients are shown. When you                
scroll to the end, there are links to either show or hide five more patients. It is possible to “show”                    
all 101 patients and scroll through the entire list. The application handles fairly well because               
only the patients in the window’s view are actually being rendered, optimizing overall             
performance. 
 

 



 

 
 

 
1) The user can select a target patient using the dropdown menu. 
2) Pressing the button takes the user to the Dose Estimation view. 
 
 

 
3) The color scale indicates the level of radiation a organ has received, measured in GY.                
Hovering over the color scale shows the dose value mapped to that color. D3.js is used to color                  
encode the organs, mapping a range of radiation doses to the custom color scale. 

 



 

 
 
4) A slider used to change the opacity of the 3D organ models. 
5) Toggles the Organ List menu. 
6) The Organ List menu. The list is dynamically created at runtime using the data stored in                 
organAtlas.json. The menu is used to either filter (hide) a single organ or an entire partition. 

 



 

 
7) The patient’s name or ID. 
8) The patient’s similarity score when compared to the target patient. 
9) The total dose a patient received or will receive. 
10) The volume of the primary GTVp tumor. 
11) Tumor laterality and subsite. 
12) A three.js 3D scene. Organs are represented two different ways, as 3D models and at the                 
centroid of each model as a sphere. Adjusting the opacity slider, a hybrid organ view can be set.                  
Spheres are used to minimize occlusion, allowing the user to see all data points and patterns                
clearly. Models of organs are used to help distinguish between different organs and to keep the                
overall structure of the head and neck intact. The opacity level of the models tend to depend on                  
the user task at hand. A patient’s organs are spatially mapped to the 3D scene, and each                 
patient can be rotated to get a better look at the data. Tumors are only represented as spheres,                  
because models can not be obtained. The spheres are slightly larger than the spheres              
representing organs, and the black outline is thicker. If a patient has both a primary GTVp tumor                 
and secondary GTVn tumor, a solid black edge is placed between the two. 
13) A orientation cube, to aid in determining what side of the head is being viewed. Currently the                  
right side of the head is being viewed. 

 



 

 
 

Dose Estimation View 

 
 
In the Dose Estimation view, the top five most similar patients are averaged to provide a dose                 
distribution prediction for the target patient. In this view, the dose prediction for a organ can be                 
compared to the actual radiation dose applied to that organ. An additional patient view is               
created to highlight the differences between the predicted and actual values. Users can use this               
view to validate the current similarity method. 

 



 

 
14) The target patient from the main view is also presented in the Dose Estimation view. 
15) The top five most similar patients are averaged to create the Estimation view. 
16) A third view of the selected patient, highlighting the differences between the predicted and               
actual doses. 
17) The color scale used to amplify the differences, making them easier to observe. 
 
 

 
18) A multi line chart, showing the data that goes into the prediction. In the main application                 
view, organs are represented as spheres and models. Here, each organ is represented as a               
line. Furthermore, in the main view the color of the sphere and model correlates to the radiation                 

 



 

dose received. Here, the height of the line maps to the radiation dose received. The y axis plots                  
the radiation dose. The x axis holds the estimation, followed by the top five most similar patients                 
compared to the selected patient. The Estimation view of the patient in the top row corresponds                
to “0: Estimation” on the x axis. The chart can be used to observe trends or anomalies in the top                    
five most similar patients. 
 

Interaction 

 
Details on demand. 

 
As mentioned earlier, hovering over the color scale shows the dose value mapped to that               
particular color.  
 

 
Linked Views plus details on demand. 

 
Hovering over a sphere, details about the respective organ appear. Information shown includes             
the name of the organ, mean radiation dose received, volume, dose per volume, minimum              
radiation dose received, and maximum radiation dose received. The patient views are also             
linked. Hovering over a organ highlights that organ across all patients. 

 

 



 

 
Linked Views. Rotation. 

 
The patient views are further linked through rotation. Rotating one patient syncs the rotation              
across all patients. Consistent views of the patients ensure appropriate observations can be             
made. 

 



 

 
Linked Views. Opacity. 

 
Adjusting the opacity slider changes the opacity of the 3D organ models. The patient views are                
further linked through opacity. Decreasing the opacity makes it easier to understand the             
structure of the head and neck, and the individual organs. Increasing the opacity allows users to                
view the radiation doses across all organs without having to rotate the scene. 

 



 

 
Linked Views. Filtering Organs. 

 
It is possible to filter organs from the scene. Filtering of the organs is linked across all patients.                  
Organs can be filtered individually or by partition. In the above, the Oral Cavity & Jaw partition is                  
filtered out. 

 



 

 
Linked Views across different encodings. Details on Demand. 

 
In the Dose Estimation view, all the visual encodings are linked. Hovering over a line in the chart                  
highlights the respective organ (sphere) across the top views. Hovering over a line also reveals               
the name of the organ, along with the radiation dose the organ received for the patient closest to                  
the mouse position. 

 
 

 



 

 
Linked Views across different encodings. Details on demand. Filtering organs. 

The thicker outline of the spheres representing tumors makes 
them easier to see when highlighted. 

 
In the previous view the user was hovering over a line in the chart. In this view, the user is                    
hovering over a sphere. Again, all the visual encodings are linked. Hovering over a sphere               
highlights the respective sphere across all the top views, and highlights the respective organ              
(line) in the multi line chart. Filtering of the organs is also linked across all encodings. 

 
 
 

 
Details on demand. 

 
Just like with the other color scale, hovering over this color scale shows the dose value mapped                 
to that particular color.  
 

 



 

Implementation 
The visual analysis tool was developed with web technologies JavaScript [14][15], HTML5 [16],             
and CSS3 [16]. The web-application was tested using the Chrome v70 web browser [17].              
Three.js r84 [18] is a JavaScript 3D library, and is used to spatially render and interact with each                  
patient and organs of interest. D3.js v5.7 [19] is a JavaScript library for manipulating documents               
based on data. I use D3 to create and render a multi-line chart, map custom color scales to                  
dose values, and read in JSON files. 
 
 

3. EVALUATION AND RESULTS 
I evaluate quantitatively the results of the prediction using a dataset of 101 head-and-neck              
cancer patients. I further report qualitative feedback from our collaborators regarding the            
method and interface.  
 

3.1 Quantitative Evaluation  
Our hypothesis is that the more similar two patients are under the developed similarity method               
and metric, the more likely it is that those patients will receive similar radiation therapy               
treatments. To test this hypothesis, we use an existing dataset of 101 head-and-neck cancer              
patients.  
 
For each patient in this dataset, we first use the similarity method to identify the five most similar                  
patients to the given patient. We then use the known radiation dosage across the five most                
similar patients to predict the radiation dosage distribution (the amount of radiation per each              
organ) of the given patient. We validate the prediction against the actual radiation dosage              
distribution for that patient. 
 
As discussed above in the Dose Prediction section, the Python script writes to disk the file                
differences.csv. The columns consist of the patient’s ID, followed by the IDs of the top five most                 
similar patients, and then every organ difference. Two additional columns are created at the              
end, “Sum” and “Average”. The “Sum” column calculates the sum of all the organ differences for                
a particular patient. The “Average” column calculates the average organ difference for a             
particular patient. The differences.csv file is used to evaluate quantitatively the results of the              
predictions and for k-fold cross-validation. The goal of cross-validating the data is to test the               
method’s ability to predict new data that was not used in estimating it. We are in the very early                   
stages of applying k-fold cross-validation. Below are some findings from our preliminary            
evaluation, which were presented to our collaborators. 
 

 



 

Looking at the “Average” column, 24 patients have an average difference dose greater than or               
equal to 8 GY, while 77 patients fall below this value. We examined the 24 patients using the                  
visual analysis tool, gathering any insights that might explain the high averages. Some recurring              
themes were observed. 9 patients do not have a primary GTVp tumor, or the data is missing.                 
This means proper similarity scores could not be computed which could account for the high               
averages. For 10 patients, either the target patient or a patient used for the prediction is a                 
special case where radiation is only applied to one side of the head, skewing the final dose                 
distribution prediction. The current similarity algorithm can't detect these special cases, and            
development is underway to achieve this functionality. 4 patients are above the 8 GY value for                
reasons currently not known, but for these patients the organs in the throat partition are either                
highly overestimated or highly underestimated when compared to the actual radiation dose            
values. This would be interesting to explore further. For 1 patient, the similarity scores for the                
top five most similar patients are relatively low, which can help explain why the average               
difference dose is larger. 
 

3.2 Domain Expert Qualitative Feedback 
To evaluate our interface, we have collected qualitative feedback from four radiation oncologists             
at MD Anderson, and have demonstrated the interface to larger groups of oncologists at the UIC                
Cancer Center, at the John Theurer Cancer Center, and at a computational pathology meeting              
in Shonan, Japan. The feedback was uniformly enthusiastic. Domain experts have repeatedly            
commented on how intuitive the 3D views were to understand the radiation dosage distribution              
similarity across patients. During repeated evaluation sessions, our collaborators were          
furthermore able to identify outliers in the data and a few instances of defective data, which                
further testifies to the value of this tool. 
 
 

4. DISCUSSION AND CONCLUSION 
 
The automated method and visual analysis tool have undergone many iterations, which            
correlated closely to the type and amount of data provided by our collaborators. There was once                
a time where we were manually extracting data components from DICOM files, before the              
workflow across collaborators was streamlined. As another example, the first iteration of the             
visual analysis tool only contained 2D views of the patients, because the exact locations of               
organs were not known and each patient only had around ten organs associated with them.               
When we received more data, and each patient had around fifty organs associated with them,               
the visual encodings had to be updated to allow for effective visual analysis. 
 

 



 

The current iteration can be thought of as a Beta release. We are getting consistent and                
promising results, but this is an ongoing research project that will be taken further. 
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