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Fig. 1: Using Curio to build a dataflow to analyze the shadow impact of a proposed building in Boston. (a) The user first adds a
node to download OpenStreetMap data for the region of interest, (b) then accumulates shadow data for a period of the day, and (c)
visualizes the results in a 3D map. (d) An alternate scenario is created by leveraging Curio’s interaction node, allowing the user to
select buildings in the 3D map. (e) The difference in shadow between the current and alternate states is then visualized. (b,d) With
Curio, it is also possible to create annotations in the code to facilitate the creation of GUI elements. (f) The final dataflow can be
exported as a standalone visualization that includes 3D maps and GUI elements.

Abstract—Over the past decade, several urban visual analytics systems and tools have been proposed to tackle a host of challenges
faced by cities, in areas as diverse as transportation, weather, and real estate. Many of these tools have been designed through
collaborations with urban experts, aiming to distill intricate urban analysis workflows into interactive visualizations and interfaces.
However, the design, implementation, and practical use of these tools still rely on siloed approaches, resulting in bespoke systems that
are difficult to reproduce and extend. At the design level, these tools undervalue rich data workflows from urban experts, typically treating
them only as data providers and evaluators. At the implementation level, they lack interoperability with other technical frameworks. At
the practical use level, they tend to be narrowly focused on specific fields, inadvertently creating barriers to cross-domain collaboration.
To address these gaps, we present Curio, a framework for collaborative urban visual analytics. Curio uses a dataflow model with
multiple abstraction levels (code, grammar, GUI elements) to facilitate collaboration across the design and implementation of visual
analytics components. The framework allows experts to intertwine data preprocessing, management, and visualization stages while
tracking the provenance of code and visualizations. In collaboration with urban experts, we evaluate Curio through a diverse set of
usage scenarios targeting urban accessibility, urban microclimate, and sunlight access. These scenarios use different types of data
and domain methodologies to illustrate Curio’s flexibility in tackling pressing societal challenges. Curio is available at urbantk.org/curio.

Index Terms—Urban analytics, urban data, spatial data, dataflow, provenance, visualization framework, visualization system.

1 INTRODUCTION

The growing availability of urban data in the past decade has led ur-
ban experts from a diverse range of disciplines to increasingly adopt
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data-driven methodologies for scientific inquiry and policy forma-
tion [32, 35]. Such data is derived from a multitude of sources, in-
cluding government databases [5], sensor networks [4], street-level
images [8], and transportation systems [74]. By capturing various as-
pects of city life, infrastructure, and the environment, data analysis
can offer valuable insights to address pressing challenges related to
housing [9], transportation [19], accessibility [59], climate [38], disas-
ters management [54], and public health [39]. To effectively analyze
urban data, experts must tap into a variety of resources and develop
analytics workflows capable of handling the diversity and complexity
inherent to urban datasets. One popular approach is the design of ur-
ban visual analytics applications. In collaboration with urban experts,
visualization researchers and practitioners construct applications that
untangle intricate urban analytics workflows into intuitive, interactive
visual representations. This enables experts to explore, understand, and
gain insights from data. Alternatively, urban experts have extensively
used computational notebooks (e.g., Jupyter, Observable) to implement
their analytics workflows, leveraging a rich ecosystem of urban science
libraries [70]. Both approaches have their strengths and weaknesses.

On the one hand, urban visual analytics applications tackle research
and engineering challenges to enable the interactive visual analysis of
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data. Designing and constructing these applications, however, is a labo-
rious and time-consuming process, requiring visualization researchers
and practitioners to account for the inherent complexity of urban data
and the diverse needs of experts. Such a complex development process
often leads to the creation of one-off monolithic pieces of software that
are difficult to extend and adapt to handle new data or use cases. On the
other hand, computational notebooks support literate computing [34] by
intertwining code, comments, and visualizations. However, they offer
limited visualization capabilities, being largely constrained to static and
simple views that need to be manually specified [6, 66]. Furthermore,
notebooks have been increasingly criticized for encouraging bad pro-
gramming habits, leading to unexpected execution order, fragmented
code, poor versioning, and lack of modularization [22, 51, 56, 69].

To bridge these gaps and facilitate the creation of urban visual ana-
lytics workflows, we propose Curio, the Collaborative Urban Insights
Observatory. Curio is a web-based visualization framework that allows
different users, such as visualization researchers, practitioners, and
urban experts, to collaborate in the design and implementation of urban
visual analytics workflows. Such collaboration takes place in a shared
interface that uses an intuitive dataflow diagram where users externalize
their workflow design decisions through a series of urban-specific com-
puting modules. Unlike previous dataflow works that were designed
for scientific visualization [7, 23, 55] or tabular data [71], Curio was
specifically designed considering common urban data analytics tasks.
Its modules enable users to execute a comprehensive series of tasks
seamlessly. These tasks include loading 2D and 3D spatial data that
describe the built environment (e.g., street networks, parks, buildings),
accessing open-data APIs, cleaning, transforming, and filtering data, as
well as creating plot- and map-based interactive visualizations that can
be connected through linking and brushing.

Curio contains a series of pre-defined, reusable modules and also
allows for the creation of user-defined ones. These modules can be
specified at three abstraction levels: programming using Python, speci-
fying visualizations using Vega-Lite [60] or our previously introduced
urban-specific grammar [49], or through GUI elements. Following such
an approach allows users with different expertise to collaborate and
quickly iterate over different design choices, offering functionalities
that meet the expectations of both experts and visualization researchers.
Importantly, rather than a compartmentalized development approach
that confines visualization researchers and urban experts within the
boundaries of their respective domains, Curio introduces a common
canvas in which they can articulate their intent while maintaining aware-
ness of the contributions and artifacts generated by their collaborators.

Moreover, to ensure the tracking of dataflow modules, Curio is a
provenance-aware framework that records the evolution of artifacts
throughout the collaborative process. It provides a history of modi-
fications, iterations, and contributions made by each user. In doing
so, Curio facilitates the exploration of alternative development paths,
allowing users to easily revisit and revert changes if necessary. Curio
also supports reproducibility through the sharing of complete work-
flows or specific modules. Users can save and export self-contained
descriptions of the workflow and share them with collaborators or other
audiences. Curio is available at urbantk.org/curio. Our contributions
can be summarized as follows:
• We present a provenance-aware dataflow that supports urban visual

analytics through the combination of modules.
• We present Curio, a web-based framework that supports the asyn-

chronous collaborative creation of urban visual analytics dataflows.
• We present a series of usage scenarios created in collaboration with

urban experts, highlighting Curio’s flexibility in addressing several
domain problems.

2 BACKGROUND

Urban analytics workflows usually require multidisciplinary teams
with skills in all stages of the data lifecycle [14, 35, 72]. For exam-
ple, urban experts (e.g., architects, urban planners, climate scientists)
collect data from various sources or generate new data using simula-
tions. Second, they clean and transform the data, using general [2]
or urban-specific [15] data management solutions. Third, they use

analytical and modeling approaches [70] to extract features, identify
trends, analyze correlations, etc. Finally, experts create visualizations
to gain insights into the data and better understand urban problems
or phenomena. The complex nature of urban analytics presents key
challenges that increase the analytical bottleneck for urban experts.
For instance, the heterogeneity and volume of urban data require pre-
processing techniques to ensure consistency and usability across the
processing pipeline. Urban datasets exhibit considerable variation in
format and scale, ranging from street-level imagery to 3D building ge-
ometries. Moreover, the dynamic nature of urban environments means
that data is constantly changing, requiring analyses to be updated so
that insights do not become outdated before they can be leveraged.
Lastly, urban environments introduce multifaceted relationships among
data elements, necessitating multiple iterations and refinements of the
data pipeline to handle spatial and temporal dependencies.

To tackle some of these challenges, for more than a decade [14,
16, 73], researchers across disciplines have been creating end-to-end
applications that encompass many of the aforementioned steps and seek
to tightly integrate interactive visualizations and analytics capabilities.
The design of these applications easily leads to rather large codebases.
For example, our previous applications [18, 19, 46, 47, 49, 57] have
approximately 100,000 lines of low-level code that took 6 to 18 months
and multiple researchers with different computer science expertise to
design and develop, from initial conversations with experts to opera-
tional versions. The iterative process of design and development, often
including multiple rounds of feedback and revisions with experts from
multiple disciplines, contributes to the expansion of the codebase.

With such a lengthy and complex process, development is suscepti-
ble to various pitfalls. These may include neglecting best development
practices, failing to maintain records of intermediate artifacts, and
opting to reinvent the wheel rather than adapting existing codebases
(including ones created by urban experts). Such a scenario stiffens
visualization research as well as the creation of practical tools for urban
experts. From a visualization standpoint, given the complexity of these
systems, iterating over the design space of urban visualizations is diffi-
cult, as the implications of changes need to be carefully weighed against
their impact on the existing codebase. The result is a less fluid design
process, rarely considering alternative design choices once a commit-
ment has been made. From a practical standpoint, such laborious design
and development lead to the creation of bespoke and monolithic pieces
of software. And these applications are rarely made public. In fact, in a
recent survey of open urban planning tools [70], only one was originally
published by the visualization community [46], despite the abundance
of contributions by the community tackling planning problems.

This scenario is not unique to urban visual analytics [68], but the
complexities of urban data and tasks make the situation more pro-
nounced in urban contexts. A framework that tackles the aforemen-
tioned challenges answers several recent calls from the visualization
and urban research communities. First, it would support the collabo-
rative creation of urban and geospatial analysis pipelines [14, 66, 75].
Second, it would lower the barriers to the creation of reproducible
artifacts that can be easily shared and made public [75]. Third, it would
facilitate the creation of transparent and modular visual analytics mod-
ules [31,67]. Finally, it would support the creation of provenance-aware
pipelines that can be used to recover past states [3,11,58,75], including
visualizations discarded in the design process [1].

3 RELATED WORK

In this section, we review research related to various aspects of this
work. In particular, we review challenges in urban visual analytics,
construction tools for urban visual analytics, and collaborative visual
analytics systems.

3.1 Urban visual analytics

A common usage scenario for urban visual analytics tools is to help
untangle the complex dynamics within a city by analyzing its present
conditions through visual summaries or mining algorithms [13, 19, 37].
Other applications involve analytical tasks that consider the 3D nature
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of the city and, for this reason, include visualizations of 3D environ-
ments [48]. This makes the design and implementation of these tools
considerably more difficult due to more complex data management,
rendering, and integration between physical and thematic data [49, 50].
Urban visual analytics tools also provide critical support for assessing
the potential impacts of various changes, ranging from policy to infras-
tructure and urban development, i.e., scenario planning. Such analyses
can help evaluate and prepare for different possible future conditions.
To do so, these tools employ modeling techniques to simulate the ef-
fect of changes in the city and use visualization to quantitatively and
qualitatively evaluate these new scenarios [18, 42, 45].

The examples mentioned above showcase the diversity and complex-
ity of urban visual analytics systems. These tools are sophisticated
pieces of software designed through collaborations with urban experts.
Their development encompasses intricate data processing and integra-
tion with modeling and simulation techniques, employing advanced
visualization designs and interactions. Curio builds on previous efforts,
including our own [19, 45–47, 49], to facilitate the creation of urban
visual analytics applications through urban-specific dataflows. These
dataflows can be translated into standalone applications that can be
shared and reproduced by urban experts.

3.2 Construction tools for urban visual analytics

Urban visual analytics systems rely on several toolkits, frameworks,
and authoring tools to implement their visualization requirements [17].
Mei et al. [44] presented a design space and named these tools as
construction tools. In our previous work [49], we proposed a grammar-
based construction tool for urban visual analytics. This tool relies on
an urban-specific visualization grammar, requiring users to write JSON
specifications.

Computational notebooks offer a highly flexible approach to data
analysis, making them a popular environment for urban studies and
analyses [64]. However, notebooks still carry a number of shortcomings
(e.g., unexpected execution order, fragmented code, and poor versioning
and modularization [22, 51, 56, 69]).

Dataflow visualization frameworks provide a powerful solution to
the problems mentioned above, by providing intuitive interfaces to spec-
ify not only visualizations but also an entire analytical pipeline. For
example, Bavoil et al. [7] proposed VisTrails, which enabled the speci-
fication of visualizations via a dataflow diagram based on VTK [24].
A core component of VisTrails was the use of provenance graphs to
record the process of constructing the dataflow. However, the closeness
between VTK classes made the dataflow specifications in Vistrails low-
level and hard to create. Also, the interaction between the specified
views is limited. Other examples of visualization dataflow frameworks
include ExPlates [30] and VisFlow [71]. However, previous frame-
works are limited in the data types and visualizations they support,
preventing them from being used for urban analytics workflows that
involve modeling, simulation, spatial data, and 2D and 3D map-based
visualizations. Curio builds on these experiences and uses a dataflow ap-
proach to enable the easier creation and modification of urban analytics
pipelines, while supporting the provenance of the users’ creations. Cu-
rio also supports the integration of custom modeling and visualization
capabilities.

3.3 Collaborative visual analytics systems

Collaboration is essential in projects that leverage data, including the
ones targeting urban problems. In these scenarios, experts collaborate
in the process of exploring data to extract insights. In urban analytics,
this generally involves processing, modeling, and visualizing data, as
well as predictive analysis for scenario planning. Therefore, there is a
need for effective tools that support this complex collaborative process.
Wang et al. [64] highlighted that collaboration is desirable, but it is not
efficiently facilitated by widely used computational notebooks, such
as Jupyter notebooks, for several reasons. For instance, it is difficult to
maintain intermediate products and an understanding of the exploration
process. Another observation is that maintaining the provenance of the
development can also help in the collaboration process.

As discussed by Isenberg et al. [29], providing support for collabora-
tion is neither a trivial task nor usually considered when designing vi-
sual analytics systems. This is especially true in urban visual analytics,
with few systems reporting collaboration as one of their design goals,
which has been suggested as an interesting research direction [14, 36].
Some works are exceptions to this. For example, Lukasczyk et al. [40]
proposed a web-based map tool that enables synchronous and asyn-
chronous collaboration between multiple users. Sun et al. [62] proposed
a 3D collaborative environment for urban design. All these works, how-
ever, have different objectives compared to Curio, as they focus on
specific urban analytics workflows. In other words, they do not al-
low for the construction of analytics pipelines, but rather provide a
fixed interface with pre-defined analytics scenarios. Finally, ArcGIS,
a general GIS tool, supports collaboration via shared workspaces and
synchronization mechanisms. Curio supports collaboration through
various features. For example, Curio’s modules have levels of abstrac-
tion to support users with different programming backgrounds. Also,
users can add and share comments on the dataflow diagram to facilitate
knowledge sharing and the creation of data narratives. Finally, through
provenance, users can explore the different versions of the dataflow
produced during the collaboration.

4 CURIO’S DESIGN GOALS

Curio’s overarching goal is to facilitate the flexible creation of urban
visual analytics dataflows. Curio’s design goals were motivated by our
previous contributions (e.g., [19, 45, 47, 49]), as well as meetings with
three urban experts (co-authors of this paper). In these meetings, we
were able to better understand their workflows and how visualization
tools and computational notebooks were used by them. This process
also shed light on the practical applications of one of our recently pro-
posed toolkits, the Urban Toolkit (UTK) [49], helping identify key pain
points and directly informing our design goals. Our goals are also in-
fluenced by recent works highlighting the need to support collaborative
workflows [14, 66, 75], modular visual analytics components [31, 67],
and provenance [3, 11, 58, 75]. In the following sections, we refer back
to these goals when describing Curio.
DG1. Collaborative visual analytics. Urban visual analytics problems
are complex and inherently multidisciplinary. For this reason, they are
addressed by analysts from different domains (e.g., architecture, engi-
neering, visualization) working in teams. To enable this, Curio should
support collaboration in the creation of urban visual analytics dataflows.
The framework should offer features that allow users to contribute to
shared dataflows, increasing user engagement in the design process.
Additionally, Curio should facilitate an iterative design methodology,
encouraging continuous feedback and adjustments.
DG2. Flexibility and modular design. As mentioned, urban experts
come from diverse disciplinary backgrounds, each with unique method-
ologies, data requirements, and analytical needs. To avoid reinventing
the wheel with each new urban visual analytics application, Curio
should support a modular component design. It should enable users to
easily add, remove, or modify modules to meet their specific needs and
preferences. This flexibility extends to the preservation of user-created
modules, ensuring their reusability in future projects by allowing users
to save and load desired functionalities. Moreover, recognizing that
urban analytics involves experts from diverse fields, Curio should sup-
port shared component templates. The framework should also ensure
compatibility with a broad spectrum of data formats and standards.
DG3. Reproducibility and provenance of modules. In a collabora-
tive environment, provenance can enhance efficiency and transparency
among collaborators by facilitating users’ understanding of the evolu-
tion of a dataflow and identifying the sources of data and transforma-
tions. Moreover, provenance can also support the collection of design
alternatives created in the collaborative process, including ideas that
were ultimately set aside in favor of other solutions. Curio should then
support the provenance of modules created when users interact with
the framework. It should also support the visualization of provenance
data and enable users to easily revert to specific versions of modules,
facilitating the exploration of their evolution over time. The framework
should also facilitate the reproducibility of modules and dataflows.
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Fig. 2: Illustration of the key concepts of the Curio dataflow model. (a) A thematic layer lc and physical layers lb and ln are loaded. (b) Spatial joins
between lc and lb (lc

⊗
lb), and lc and ln (lc

⊗
ln) are computed. (c) The results of the joins are visualized. (d) To support linked views, the Curio

dataflow makes use of interaction nodes. (e) lc
⊗

lb and lc
⊗

ln are further joined, creating a link between them. (f) Interaction nodes augment the
previously joined layers, propagating information when a user selects or brushes elements in a visualization (shown in (g)).

5 A DATAFLOW FOR URBAN VISUAL ANALYTICS

This section introduces the main aspects of Curio’s dataflow to support
the creation of urban-specific workflows and applications, with the
aforementioned design principles in mind. We first formally introduce
Curio’s dataflow model (Section 5.1), followed by the supported types
of urban data (Section 5.2). We then present the dataflow modules
(Section 5.3) and detail how Curio supports data transformation and
interactions (Section 5.4).

5.1 The Curio dataflow model

With Curio, an urban expert can design and implement workflows by
organizing a sequence of steps in a diagram, with steps connected
through data dependencies. These steps compose a dataflow that may
include several operations, such as data generation, transformation,
management, analysis, and visualization. In this section, we introduce
the main elements of Curio’s dataflow model: its smallest unit of
interest (data layer), its two classes of computing modules (data node
and interaction node), and connections (data dependency and inter-
action dependency). Our dataflow model formalism extends the one
presented by Ikeda et al. [28].

In Curio, the smallest unit of interest is a data layer l. A data layer
is characterized by k attributes (columns) and m records (rows) and
can be represented as l = {r1, ...,rm}, where each record ri is a tuple
ri = (ai,1, ...,ai,k), where a are data attributes. We denote a set of layers
as L. These data layers can represent a variety of urban data, such as
sensor and raster data, images, and building geometries. The different
types of urban data supported by Curio are discussed in Section 5.2.

A data node is a module that will represent an operation on top of
a data layer, such as data cleaning, transformation, and visualization.
These can include pre-defined algorithms or procedures defined by the
user. A data node n = (Li,Lo) is then defined as a tuple consisting of
input data layers Li and output data layers Lo. Each data node takes as
an input and produces zero or more data layers, depending on the type
of operation. Curio supports different types of operations so that the
framework can be aligned with urban experts’ workflows. These steps
are detailed in Section 5.3.

A data dependency ϕ connects the flow of data between two data
nodes. It is defined as ϕ = (L f low,nsource,ntarget), with data layers
L f low and two data nodes: nsource (source node) and ntarget (target
node). These must satisfy the condition L f low = nsource.Lo ∩ntarget .Li.
The directed dependencies of a dataflow diagram express the connection
between two nodes, with the target node having access to the data
processed in the source node.

To support user interactions and linked views, Curio’s dataflow
model introduces an interaction node and an interaction dependency.
An interaction node ni is a special node that will receive data layer l as
an input and will output a data layer l′ that is equal to l but with an extra
attribute ai,k+1 that specifies whether the set of records R were selected
or not by the user. In Figure 2(d), both tables have an interaction
column that specifies whether that record was selected by the user.

Furthermore, an interaction dependency ε defines an interaction flow
between (1) a data node and an interaction node or (2) two interaction
nodes. For example, if a dataflow contains two linked plots (defined by
two data nodes), each will have data and interaction dependencies to an
interaction node; the data dependency will be responsible for passing
along data, while the interaction dependency will be responsible for
updating l with respect to the records R selected by the user. It is
defined as ε = (R,ni,n). An interaction dependency can only exist
between two nodes if there is a data dependency between them. Curio’s
interactions are detailed in Section 5.4.

Consequently, a Curio dataflow is a composition of multiple nodes,
connected by data and interaction dependencies. Such dataflow can
be represented as a tuple F = (N,Ni,L,φ), comprising data nodes N,
interaction nodes Ni, data layers L, and data dependencies φ . Inter-
action dependencies since they only change visualization properties,
are not part of F . This ensures that F is a directed acyclic graph with
respect to the movement of data along the dataflow. By design, this
is a rather flexible dataflow model. As outlined in Section 5.3, it sup-
ports the creation of urban-specific nodes to handle different parts of
a workflow. Following such a model, Curio supports the collection of
historical information regarding dataflow executions for further analy-
sis, i.e., provenance data [25]. Our provenance approach is detailed in
Section 6.4.

5.2 Urban data layers
Curio supports a variety of urban data layers, covering a wide range
of applications and use cases across different urban domains. Each
type of data node, discussed in Section 5.3, is restricted to certain input
and output layers. In our previous work [18, 49], we divided these
layers into thematic and physical data layers. Thematic data layers
correspond to values over 2D or 3D space, such as sociodemographic
data over 2D regions or sunlight access values over 3D building surfaces.
Physical data layers correspond to the built or natural environment, such
as buildings, road networks, or regions of interest in a city, such as
neighborhoods and parks. In Curio, we extend this to also include
street-level imagery data, an increasingly popular source of data for
urban analyses [8] – which we call the image layer. Next, we detail
these data layers, mentioning key urban datasets as examples.
Thematic layers. Two types of thematic layers are supported: point and
grid layers. These can hold univariate or multivariate data. A point layer
is used to represent events or features associated with specific locations.
Examples include taxi pickups and drop-off positions, environmental
observations (air quality monitoring stations, temperature sensors), or
positions of noise complaints and crime incidents. Each data point is
a data layer record. A grid layer (or raster layer) is used to represent
data aggregated over a fine-grained grid that covers a region of the city.
The grid cells hold data values, such as rainfall volumes or simulated
temperatures. Each grid cell is a data layer record.
Physical layers. Three types of physical layers are supported: 2D
and 3D mesh layers, and network layer. A 2D mesh layer is used to
represent geographical boundaries and surfaces in 2D, such as lots,
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neighborhood areas, water bodies, or any zone that requires delineation
over a flat plane. Here, each geographical area (e.g., neighborhood) is
a data layer record. A 3D mesh layer extends the capabilities of the 2D
mesh by adding a third dimension to represent the spatial properties
of features, such as buildings. In this case, each building is a data
layer record. A network layer is designed to represent linear features
that form networks, such as roads and sidewalks. Here, each network
segment (e.g., a street between intersections) is a data layer record.
Image layer. An image layer is used to represent street-level image
data, such as data from Google Street View or Mapillary. Each entry
in this dataset contains, at the very least, a position and an associated
image. For images captured by car-mounted sensors (such as Google
Street View), this layer can also contain information like the time of
capture and whether the camera was facing the left or right side of the
street. In an image layer, a tuple with position and image constitutes a
data layer record.

5.3 Dataflow nodes
Curio’s dataflow nodes support common data operations performed
in urban workflows. While the framework has pre-defined operations
for each one of these nodes, it is reasonable to assume that, due to the
diversity of urban workflows, they are not comprehensive. As such, we
present the nodes as templates that have defined inputs and outputs, but
that can be modified, stored for later use, and shared with other users.
We categorize these nodes into broad categories: data loading, data
wrangling & transformation, analysis & modeling, visualization, and
interaction. When describing them, we indicate whether they can have
zero, one, or more sources and targets in a data dependency.
Data loading nodes. Curio provides functionalities to load data layers
from different sources. These nodes are not the target in any data
dependency, but they can be the source in one or more. An OSM node
considers an address or bounding box covering a region of interest and
uses that to produce physical layers from OpenStreetMap, including
2D mesh layers, 3D mesh layers, and network layers. A raster node
and NetCDF node load raster data (e.g., from satellite imagery) and
NetCDF files (e.g., from WRF simulations). An open data node uses
the Socrata Open Data API to access common datasets made available
by cities. A generic file node loads a data file and produces an output
with the corresponding layer.
Data wrangling & transformation nodes. These nodes are respon-
sible for cleaning and transforming data layers. They can serve as
both the source and target in one or more data dependencies. For data
cleaning, Curio provides two basic nodes: the remove duplicates and
remove missing values nodes. For data transformation, Curio provides
the ability to perform statistical normalization, group-by’s, and spatial
joins.
Analysis & modeling nodes. These nodes are available for analytics
and simulation tasks. They can be the source and target in one or more
data dependencies. For modeling, Curio provides a node to compute
sunlight access. This node leverages our previous work [45] and takes
as input one or more physical layers (e.g., buildings, parks) and outputs
a 3D mesh layer with corresponding sunlight access values at each
vertex. Curio also provides a topology node, offering connections with
the Topology Toolkit [63], facilitating the extraction of features shown
to be useful in urban visual analytics [46].
Visualization nodes. Curio has four types of visualization nodes. They
can serve as both the source and target in one or more data dependencies.
For a quick overview of the data, we provide a table node that takes as
input one or more thematic layers. For 2D visualizations, we provide
a Vega-Lite node that also takes as input one or more thematic layers.
In this node, the user can directly edit the Vega-Lite specification. For
3D visualizations, a UTK node takes as input one or more thematic
layers and one or more physical layers, using our previously proposed
UTK [49]. Once a data dependency is connected to a UTK node, it
automatically creates a basic specification, taking into account the
spatial extension of the data given as an input. For image visualizations,
an image node takes as input one or more image layers. This node will
display input images in the form of a mosaic gallery, similar to our
previous work [47].

Interaction node. This type of node will orchestrate interactions
between views. It takes as input one or more data layers, and outputs
one or more data layers. Next, this node is discussed in detail.

5.4 Interactions
Interactions between visualizations are fundamental for enabling deep
exploration of intricate collections of urban data. For this reason,
Curio’s dataflow includes an interaction node that propagates metadata
produced when a user selects or brushes elements in a visualization.
This propagated information can be used to update the visualizations
connected to the node. Figure 2 illustrates an interaction example across
a bar chart and multiresolution spatial visualizations (one visualization
at a neighborhood level and another one at a borough level). The
user loads a point layer lc with noise complaints. The layer contains
two attributes: position and complaint type. The user also loads two
2D mesh layers representing areas, ln and lb. These layers have two
attributes each: area name and 2D mesh of the area. First, two data
transformation nodes perform a spatial join between lc and ln, and lc
and lb, using the location of the noise complaints and areas from the
2D mesh layers. Then, the data is visualized in three separate views.

In order to support linked views, an interaction node is added. This
interaction node adds an extra interaction attribute that contains a
Boolean value depending on whether a particular data record is selected
or not. The previous visualization nodes are then connected to the
interaction node through three new interaction dependencies. It is
important to note that this approach selects data records, irrespective of
the type of data layer. Given a user selection, the different visualization
nodes will be responsible for appropriately selecting the data rows
and propagating the information to the interaction node. One can also
notice an interaction dependency between the two interaction nodes.
That connection allows the propagation of interactions between data
layers in different resolutions (e.g., neighborhood and borough levels).
For this to be possible, an extra attribute must be added to each record
of one of the nodes, indicating how that record relates to the records
of the other node. Curio’s templates automatically include that extra
attribute.

6 THE CURIO FRAMEWORK

In this section, we present the Curio framework, an implementation
of the Curio dataflow model. Curio is composed of a user interface
(detailed in Section 6.1) and a backend infrastructure (Section 6.2).
Figure 3 presents Curio’s interface and Figure 4 its architecture. Then,
we present the collaborative aspects of the framework (Section 6.3), fol-
lowed by how it supports provenance (Section 6.4), and implementation
details (Section 6.5).

6.1 Visual interface
Curio’s visual interface is the central element of the framework. It is
divided into two modes: a workspace mode, where users collaboratively
create their dataflows; and a visualization mode which streamlines the
dataflow into a visual analytics interface.

6.1.1 Workspace mode

In the workspace mode, Curio provides an infinite canvas in which
users assemble their own dataflows by inserting and connecting nodes.
This mode is composed of the canvas, the node panel (with the list
of available nodes), a visualization mode toggle button, and a user
information panel. When a new dataflow is created, the canvas is
initially empty. Nodes can be created by selecting them from the node
panel, and they can be resized, repositioned, and deleted. Once on the
canvas, a node is composed of four elements, shown in Figure 3(left):
a header, displaying the type of the node; a body, showing one of
four node facets; a footer, showing six buttons (run, template selector,
GUI mode, programming mode, provenance mode, output mode); and
handles on the left and right sides of the node. Nodes can either be
shown in full detail or collapsed into an icon. An edge can be created
by dragging a path between two handles from different nodes. Edges
can also be repositioned and deleted.
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Fig. 3: Left: Main elements of Curio’s interface. Center, Right: Connecting facets from the same node. Center: A drop-down menu listing mark
attributes is created through an annotation in a Vega-Lite specification. Right: A checkbox is created, but now through an annotation in Python code.

Node facets. Curio’s nodes have four facets. The selected facet is
displayed in the body of the node: programming facet, GUI facet,
provenance facet, and output facet. In the programming facet, the
node’s implementation source file is made available to the user and can
be freely customized according to their needs. Depending on the node
type, either a Python code or visualization grammar specification is
displayed and is editable by the user. In the GUI facet, visual interface
elements, such as drop-downs, sliders, and checkboxes, are provided to
the user, allowing them to adjust parameters and configure the behavior
of the node operation. For example, in an OpenStreetMap data loading
operation, the user can define the physical layers of interest (e.g., parks,
streets, buildings). In the provenance facet, a tree is displayed with
the history of versions of that particular node (Figure 3(left)). Since
nodes can be customized by the user, every time a new version of the
node is executed, its version is stored. This approach allows the user to
roll back to previous versions at any point of the dataflow construction.
Finally, the output facet displays the data produced by the node, either
as a visualization (for visualization nodes) or a formatted output (for
all other nodes).

Connecting different facets of the same node. Though Curio comes
with a host of pre-defined nodes, as outlined in Section 5.3, users
can still edit nodes’ implementations and make parameters available
through GUI elements. This link between the programming facet and
the GUI facet is done through annotations. Curio’s backend interprets
the code (either Python or a grammar specification) and searches for
specific characters that indicate the beginning and end of an annotation.
An annotation will have the format $[type, parameters...], where type
can be one of several GUI elements (checkbox, drop-down, slider,
date), and parameters are the parameters passed to the element for their
construction. The Curio interpreter will translate users’ interaction with
the GUI elements into Python code and grammar specifications. Once
the translation is done, Python code will be sent to the backend, and
grammar specifications will be run by Vega-Lite or UTK interpreters.
Figure 3 exemplifies this procedure, for both grammar (a,b,c,d) and
Python code (e,f,g,h). In the grammar example, the user defines a Vega-
Lite specification (a) and creates an annotation that will replace the
mark property with one of seven marks displayed to the user through
a drop-down selection (b). When the user interacts with the GUI
element, the node is updated (c,d). In the Python example, the user
modifies a Python code loading OpenStreetMap data and creates an
annotation (e) that will replace three Boolean values with the values of
three checkboxes (f). Similarly, when the user interacts with the GUI
element, the node is updated (g,h). This design feature allows users to
expose desired functionalities to a GUI while retaining the ability to
modify and extend the code as needed.

Node templates. Each type of node provides users with several pre-
defined node templates. For example, if the user wants to visualize
a scatter plot, they can create a Vega-Lite visualization node and use
the scatterplot template. Additionally, the framework supports storing
and retrieving node templates created or updated by the user. For ex-
ample, if the user customizes the pre-defined scatterplot template and
transforms it into a bubble chart, a new template can be saved in the
framework, building an ever-growing template library that can be used

by other users in the future. These pre-defined node templates can also
be updated using annotations to expose common parameters (such as
marks and colorscales for Vega-Lite) through GUI elements. We note
that, since Curio’s nodes represent common operations performed in
urban workflows, node templates enable Curio to be adapted for various
domain applications and workflows. For example, new data loaders
can be added to handle data formats popular in different areas (e.g.,
OpenStreetMap data, WRF simulations, NASA’s SRTM data), and
multiple analysis nodes, such as simulation and machine learning tech-
niques, can be added to the system. In combination with annotations,
templates enable users with different backgrounds to collaborate in
workflow construction and data analysis tasks by adding new features
to the system and receiving feedback, feature requests, and bug reports.
For example, these features may help developers understand the needs
of domain experts during the implementation of new templates. It
also may enable domain experts to create a workflow sketch based on
pre-defined node templates and ask for custom features. Additionally,
they may allow multiple developers to discuss implementation details
or different experts to discuss the workflow steps and results.
Interactive and linked visualizations. Curio provides visualization
nodes for 2D plots, supported by the Vega-Lite node, and 3D urban vi-
sualizations, supported by the UTK node. Both of these nodes support
a diverse set of user interactions, such as picking, brushing, panning,
and zooming. For data exploration, Curio allows the sharing of inter-
action states between different visualization nodes, as first outlined in
Section 5.4. These will be handled by interaction nodes, which are
responsible for enriching elements of shared layers with descriptions
of the state of the interactions. In other words, if an element is selected
in one visualization node, that information is updated in the interac-
tion node and propagated to all connected visualizations, allowing for
interactive updates.

6.1.2 Visualization mode

After defining a dataflow, Curio provides support for a visualization
mode, where all nodes and edges are hidden, with the exception of
nodes selected by the user to compose a visual analytics interface. To
add a node to the visualization mode, the user can pin a node to the
interface. The nodes selected to compose the visual analytics interface
can be resized and organized on the screen without losing their original
dataflow order and relationships. This feature is especially important
for collaboration. Programmers can use a mix of node templates,
Python code, and visualization grammars, and reorganize the elements
to present an end-to-end application to urban experts. Figure 1(f) shows
the visualization mode.

6.2 Backend infrastructure
Curio’s backend infrastructure contains a server, a data manager, and
computing sandboxes. The server is responsible for accepting and
responding to HTTP requests from the web-based frontend. It handles
user interactions related to the creation and maintenance of dataflows,
and orchestrates the communication between the frontend, data man-
ager and computing sandboxes. The data manager is responsible for
storing all datasets loaded and produced during the execution of the
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dataflow, maintaining the persistence of the dataflow state, and manag-
ing the provenance database that tracks of all actions performed during
the dataflow construction. Finally, the computing sandboxes control
the execution of the Python code implemented in the dataflow nodes.
For security reasons, Python code is executed in a Docker container.

6.3 Collaboration
A central aspect of Curio is its capability to facilitate the collaborative
development of dataflows. Curio offers a user registration feature via
a panel located at the top right part of the interface. This enables reg-
istered users to collaborate asynchronously on shared dataflows. To
increase collaboration among users with varying levels of programming
expertise, Curio’s nodes have both programming and GUI facets. The
GUI facet presents configuration parameters for each node, making
it more accessible and user-friendly for users without a programming
background. This strategy can effectively transform a dataflow into a
GUI application, similar to tools commonly utilized by urban planners,
climate professionals, and social scientists. Also, Curio has a com-
ment feature for nodes (Figure 3(left)). This allows urban experts and
visualization researchers to discuss the addition of new features, the
customization of operations, or even the creation of completely new
node templates within a dataflow. This approach documents the col-
laboration through comments, clarifying the definition and tracking of
requirements, and increasing the usefulness of the constructed dataflow.
Lastly, since Curio maintains the version history of all nodes, the user
can test different variations of the nodes that were created during the
collaboration at any time.

6.4 Provenance
Curio contains a provenance database to track versions of nodes. This
database has a schema that encompasses two primary levels: the
dataflow level, which includes specifications and executions of the
dataflows, and the node level, which details the specifications and exe-
cutions of individual nodes. Next, we detail the database, highlighting
its classes. At the dataflow level, the database stores information re-
garding the name of the dataflow and its nodes, which consume and
produce layers. Each layer consists of multiple attributes. Throughout
the collaborative process, several versions of the same dataflow can be
generated, for instance, by adding or removing nodes or by modifying
the source code of specific nodes. Consequently, the user may execute a
transaction (such as adding a node) that results in the creation of a new
version of the dataflow. Each time a version of the dataflow is executed,
a new instance of dataflow execution is generated, associated with the
specification of a dataflow. At the node level, nodes’ executions are
recorded by the node execution class, along with instances of layers
consumed and produced, represented by the layer instance class, and
their values stored in the attribute value class. These schema classes
can be linked with PROV constructs to generate a provenance graph in
the W3C PROV standard [21]. The user is mapped to a PROV agent;
nodes, layers, and attributes to PROV entities; and dataflow execution
and transformation execution to PROV activities.

6.5 Implementation
Curio’s frontend was developed using React.js. React Flow was used to
implement the main visual components. A React component was cre-
ated for each data node, containing the logic for parsing and displaying
the data. Vega-Lite and UTK were used for visualizations.

The backend server was implemented using Python and Flask.
SQLite was used to store provenance data, given its simplicity and
portability. Another important part of the backend is the sandbox to run
Python code. These containers were configured with the most common
libraries used for urban analytics. Additionally, a new serverless version
of UTK was developed, allowing external data from the workflow to
be integrated into the framework. Beyond its visualization capabilities,
UTK’s Python library was also used to load and parse OpenStreetMap
data. To demonstrate the usefulness of these functionalities, we created
a set of default template nodes that can be extended or completely
redefined by the user. Finally, user login and registration are managed
through Google OAuth.

UrbanTK
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Visualization mode
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Curio
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Fig. 4: Curio’s frontend and backend components.

7 USAGE SCENARIOS

In this section, we present a set of usage scenarios that demonstrate
Curio’s flexibility in creating dataflows to tackle pressing urban issues.
The scenarios were created in collaboration with three urban experts:
two urban planners with experience in urban accessibility (E1) and ur-
ban microclimate (E2), and one climate scientist (E3). All of them hold
PhDs. First, we engaged with them in a series of one-hour interviews
during which we asked them to present some of their common work-
flows, from data collection to visualization. We then collaboratively
built a series of dataflows using Curio. In this process, the urban experts
were responsible for creating data analysis and modeling nodes, while
visualization researchers handled data wrangling and transformation,
and visualization nodes. This collaboration occurred asynchronously,
using Curio’s comment feature to track changes and updates. The
scenarios tackle distinct challenges by integrating a diverse array of
data, including images, 3D models of buildings, weather simulations,
and sociodemographic data, drawn from various urban settings, such
as Boston, Chicago, and Milan. The cases highlight the steps of the
dataflow construction process. We direct the reader to the supplemen-
tary video for an overview of Curio in action, as well as to Curio’s
webpage for step-by-step overviews of the scenarios.

7.1 Expert-in-the-loop urban accessibility analyses
While urban livability and quality of life are highly dependent on well-
designed public spaces, for a large group of urban dwellers, particularly
those with mobility or vision impairments, these spaces remain out of
reach. Thus, it is crucial to quantify the degree to which essential desti-
nations are reachable by people with different levels of mobility [43]. In
this context, the existence, quality, and surface material of sidewalks are
major determinants of destination accessibility, specifically for elderly
and wheelchair users [10]. Despite their importance, few cities around
the world maintain such spatial catalogues [12]. Recent advances in
computer vision and the availability of street-level images have paved
the way for low-cost, high-accuracy data collection on various built
environment features, including sidewalk paving materials.

In this scenario, we illustrate how Curio can facilitate the workflow
of CitySurfaces [26], an active learning framework with expert-in-
the-loop for the semantic segmentation of surface materials. Active
learning seeks to maximize accuracy while minimizing the number of
required labeled data. By iteratively identifying and labeling the most
informative or representative images, active learning reduces the num-
ber of necessary labeled instances to attain performance comparable
to that achieved by labeling a large, randomly selected training dataset
all at once [27]. Since CitySurfaces tackles a challenging problem
of in-the-wild texture segmentation with high within-class variation
and between-class similarity, the training process should be carefully
overseen by an expert to reduce systematic biases and identify patterns
of failure and their spatial distribution [26].

We use Curio to automate the main part of the CitySurfaces workflow.
An overview of the dataflow is presented in Figure 5. E1 begins by
importing their training procedure into a new analysis & modeling node
(a). Curio’s provenance feature allows the expert to analyze several
versions of their training procedure, also highlighted in (a). After
training, E1 creates an analysis & modeling node with the procedures to
calculate the difference between the two highest prediction probabilities
in the Softmax layer (b). Using Curio’s collaborative functionalities, a
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(a) Model training (c) Physical layer

(b) Uncertainty

(d) Inspection

Fig. 5: Using Curio to facilitate expert-in-the-loop inspection of a computer vision model. (a) The user begins by training the model. Provenance
information is stored, allowing them to revert to previous versions of the model or explore different training parameters. (b) New nodes are created to
load unseen image data and compute the uncertainty of predictions. (c) A physical layer describing neighborhoods in Boston is loaded. (d) An
interactive visualization is created, enabling experts to analyze prediction uncertainty across neighborhoods in Boston.

visualization researcher creates a data node to load the image data and
joins it with Boston’s neighborhoods (c). A UTK node is then added to
the dataflow with a spatial map showing the distribution of prediction
uncertainties across Boston’s neighborhoods (d). These nodes are then
used to identify potential shortcomings with the model, requiring new
labeled data. The sorted mosaic of images also helps identify patterns
of failures where the model had the most difficulty classifying. This
signals the need to sample more images with similar light, shadow, and
built environment conditions. Given that dense labeling of images is
an expensive endeavor, Curio facilitates a more targeted approach by
identifying specific conditions that can guide the labeling process.

Importantly, the creation of this Curio dataflow allows the expert
to easily iterate over different stages, making use of interactive visu-
alizations that link map and image gallery. This case illustrates how
Curio can significantly streamline the expert-in-the-loop process by
creating a custom dataflow that integrates the sampling strategy into the
main training pipeline, automatically computing the uncertainty metric.
Furthermore, Curio enables the visualization of uncertainty maps to
guide new sampling at each stage. Tasks that were done in isolation in
the original paper [26] are now modularized into an easy-to-use and
understandable dataflow.

7.2 What-if scenario planning
Urban development projects, particularly those involving the construc-
tion of high-rise buildings, pose significant challenges to the ecological
balance and social fabric of cities. In Boston, the introduction of such
developments has sparked serious debates [52]. At the heart of the
controversy is the potential shadow cast by the new development on the
Emerald Necklace, a cherished chain of parks in Boston. This situation
has catalyzed community responses, leading to a petition urging the
City of Boston to enforce and possibly extend its shadow protection
policies [65]. Advocates for the parks argue that the new development
threatens the vitality and accessibility of these valued green spaces. The
profound ecological and societal ramifications of shadow accumulation
on public green spaces demand a sophisticated, user-centric approach
to urban planning and environmental stewardship.

We use Curio to create a dataflow that computes the shadow im-
pact of the proposed buildings. Figure 1 presents an overview of the
dataflow. With this dataflow, we can compute the shadow impact of the
proposed buildings at different times and seasons to support evidence-
based environmental impact analysis in Boston. The dataflow begins
with a visualization researcher creating an OSM node that loads Open-
StreetMap data from the region of interest (a). A sunlight access node
connected to the previous node computes the sunlight access (b), which
is then visualized in a UTK node (c).

To support what-if scenarios, they add a custom data transforma-
tion node that receives the OSM data and changes the height of a
selected building, generating an alternate scenario (d). The shadow
difference is shown in (e). Such an application is made available to
E1 in the visualization mode (f), along with GUI elements created
through annotations (b,d). With the elements, they can interactively
change the height of buildings using the GUI, and visualize the impact

on the public space. Importantly, all of the steps in this pipeline can
be transparently accessed by stakeholders who wish to investigate the
low-level functionalities. E1 notes that the proposed buildings will add
a considerable amount of shadow to the park. Given Curio’s flexibility,
E1 can quickly change the period and duration of shadow accumulation
to gain a more comprehensive view of the proposed buildings’ shadow
impact.

By empowering researchers and stakeholders to conduct detailed
before-and-after analyses of shadow impact assessments, Curio takes
a proactive approach to sustainable urban development by ensuring
that the development’s trajectory honors its commitment to ecologi-
cal integrity and community well-being. The visualization mode can
be made available to community residents, increasing visibility and
engagement on this topic.

7.3 Visual analytics of heterogeneous data

As global temperatures continue to rise, urban areas are becoming
increasingly susceptible to severe heat incidents, making sustainable
active transportation modes less attractive [33]. Outdoor thermal com-
fort and microclimate conditions in the urban environment are prime
factors influencing the use of public spaces and can significantly impact
the willingness to walk and bike [53]. In this scenario, we highlight
how Curio can be used to create dataflows for micro-scale environ-
mental and human-scale analysis. The objective is to demonstrate how
urban planners and decision-makers can effectively use the framework
to incorporate multiple datasets, including high-resolution microcli-
mate variables, to assess heat stress levels, particularly for vulnerable
populations. Figure 6 provides an overview of the dataflow.

E2 first loads high-resolution mean radiant temperature data, stored
as a TIFF file, using a grid layer node. Then, using a file node, E2 loads
air temperature, relative humidity, and wind speed data from an ERA5
hourly meteorological dataset. E2 then creates a custom analysis &
modeling node (a) that takes the previously loaded data as input and
computes the Universal Thermal Climate Index (UTCI) [20], a human
biometeorology parameter used to assess human well-being in outdoor
environments.

To study the impact of UTCI on vulnerable populations, particularly
older adults, they create a new flow that loads sociodemographic data
for adults over 65 at the neighborhood level and spatially join the UTCI
data in raster format with the sociodemographic data (b). The results
are visualized by adding a UTK map (c). The visualization researcher
then creates a linked scatterplot using a Vega-Lite node (d). The map
and scatterplot are linked through an interaction node, allowing for the
analysis of outliers of concern, i.e., regions that have large populations
of older adults and high UTCI.

To highlight Curio’s flexibility in being adapted to other scenarios,
we presented the dataflow to another urban expert (E3), who was
responsible for porting the dataflow to Chicago (e). E3 only needed
to change two data loading nodes to generate similar visualizations.
Further analyses could use a similar dataflow to identify individual
routes that may expose vulnerable populations to higher temperatures.
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(e) Chicago(a) Modeling (b) Spatial join

(c) UTK visualization(d) V-L visualization

Fig. 6: Using Curio to create visualizations leveraging multiple datasets. (a) The user loads weather data and computes the UTCI, (b) followed by a
spatial join with a physical layer describing neighborhoods in Milan. (c,d) The user then creates linked visualizations that highlight neighborhoods
with high UTCI and a large population of older adults. (e) By changing two nodes, the user can create a similar visualization using data from Chicago.

7.4 Experts’ feedback
After the creation of the dataflows, we met with the experts once more
to get their perspectives regarding Curio. We conducted semi-structured
interviews, asking them about Curio’s strengths and limitations. The
experts responded positively to the ability to have a more transparent
view of the dataflow steps. Compared to their usual workflow, E1
mentioned that the ability to interactively create a dataflow through
a diagram model aligns with how they typically conceptualize their
pipeline, describing it as a positive “alternative to having a series of
Python scripts lying around.”

Regarding comparisons with existing approaches, E2 mentioned that
“the diagram interface resembled ArcGIS Pro’s model builder”, but
added that “Curio offers more visualization options, and Python code
integration is much easier.” E2 praised the diagram interface, saying
that "we are used to working with visual programming, specifically
those of us working extensively with Rhino’s Grasshopper or ArcGIS
Pro’s model builder, which makes working with Curio a breeze. Also,
it does not tie the user to one specific software like Rhino and is much
faster." E2 also provided positive feedback about the ability to edit
Python code, noting that, unlike off-the-shelf tools, “you can optimize
operations if you want to.” E3 was particularly impressed by the
collaboration capabilities, stating that Curio’s “main strength is the
collaboration.”

Regarding limitations, E2 mentioned that it would be important to
have the ability to “drag and drop CSV files from a folder onto the
canvas, instead of creating a node to load files.” Related to this point,
E2 also mentioned that purely relying on grammars for the creation of
visualizations might be cumbersome for some, as it requires experts
to “learn yet another software stack.” The same expert was hesitant
regarding adoption, mentioning that “any framework needs a strong
support system, with extensive documentation, examples, and an active
user community.”

7.5 Reflection on design goals
We now reflect on the initial design goals that guided our efforts. Re-
garding DG1 (collaboration), Curio supports asynchronous collabora-
tion and includes several features to facilitate it. We believe that one of
the most important collaborative features of the framework is the ability
to link various facets of a node through annotations. This approach
allowed for a much easier exploration of the parameter space in the
second usage scenario. Regarding DG2 (flexibility), Curio supports the
creation and connection of computing modules, as well as storage and
retrieval of previously created ones. This was positively received by
urban experts, particularly because they could easily visualize how the
different components of their code connected with each other. Curio’s
dataflow design enables it to address a wide range of urban-specific
problems. As tool builders, we believe that a dataflow approach can
lead to more modular and interoperable visual analytics systems. Con-

cerning DG3 (reproducibility and provenance), Curio records changes
made to a node in a provenance database. This database serves not
only as a historical repository but also as a resource to visualize the
evolution of a node over time. Users can leverage these visualizations
to navigate through the different states of a node, enabling them to roll
back to specific versions as needed.

8 CONCLUSIONS

In this paper, we introduced Curio, a web-based framework designed to
enhance the creation and execution of urban visual analytics workflows.
By providing an intuitive, shared platform with a robust suite of urban-
specific computing modules, Curio simplifies the integration, analysis,
and visualization of complex urban data, supporting a broad spectrum
of urban analytics tasks. Curio is built with inclusivity in mind, ac-
commodating users across various levels of expertise. This flexibility
ensures that both domain experts and visualization researchers can
contribute effectively, iterating on design choices to produce solutions
that align with their specific requirements and expectations.

To anchor collaborative efforts in a robust framework, Curio records
each step in the dataflow’s evolution. This not only safeguards the
contributions of all participants, but also empowers users to explore
alternative development trajectories, revisit previous states, and share
comprehensive or partial dataflow with ease, thus enhancing repro-
ducibility and transparency. Curio offers a robust, scalable platform for
ongoing collaboration and innovation in urban visual analytics.
Limitations. First, Curio’s collaborative features are restricted to
asynchronously commenting nodes, reusing and extending node tem-
plates, and browsing previous versions and states of nodes. Second,
it inherits the limitations of Vega-Lite and UTK. For example, it does
not support audio or video data, two important types of urban data.
Third, Curio tracks modifications made by the user during the con-
struction of a dataflow, but it does not track user interactions within
visualization nodes. Fourth, our current mechanism for coordination
between visualizations is data-driven, meaning it is not possible to
synchronize visualization states. Lastly, our current implementation
uses in-memory data structures to store and process datasets and does
not perform rendering optimization operations.
Future work. In future work, we plan to support synchronous col-
laboration sessions. Moreover, although our evaluation methodology
finds precedent in similar frameworks [41, 71], we intend to perform a
more in-depth evaluation by engaging experts across multiple domains
to better assess our system’s usability and learnability. With respect
to provenance features, we also plan to extend Curio to support the
provenance of interactions within visualization nodes. Regarding the
support of data types, we aim to explore approaches to integrate other
complex data, such as audio and video, into the framework. We also
plan to revisit the use of dataflows as an approach for visualization
education [61], focusing on urban data and societal problems.
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