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Abstract
Unsupervised semantic segmentation (USS) aims at partitioning an image into semantically meaningful segments by learning
from a collection of unlabeled images. The effectiveness of current approaches is plagued by difficulties in coordinating
representation learning and pixel clustering, modeling the varying feature distributions of different classes, handling outliers
and noise, and addressing the pixel class imbalance problem. This paper introduces a novel approach, termed Imbalance-Aware
DenseDiscriminativeClustering (IDDC), forUSS,which addresses all these difficulties in a unified framework.Different from
existing approaches, which learn USS in two stages (i.e., generating and updating pseudo masks, or refining and clustering
embeddings), IDDC learns pixel-wise feature representation and dense discriminative clustering in an end-to-end and self-
supervised manner, through a novel objective function that transfers the manifold structure of pixels in the embedding space
of a vision Transformer (ViT) to the label space while tolerating the noise in pixel affinities. During inference, the trained
model directly outputs the classification probability of each pixel conditioned on the image. In addition, this paper proposes
a new regularizer, based on the Weibull function, to handle pixel class imbalance and cluster degeneration in a single shot.
Experimental results demonstrate that IDDC significantly outperforms all previous USSmethods on three real-world datasets,
COCO-Stuff-27, COCO-Stuff-171, and Cityscapes. Extensive ablation studies validate the effectiveness of each design. Our
code is available at https://github.com/MY-LIU100101/IDDC.

Keywords Unsupervised semantic segmentation · Imbalance-Aware Dense Discriminative Clustering · End-to-end training ·
Deep clustering

1 Introduction

Semantic segmentation aims at assigning a categorical label
to each pixel in an image. It facilitates many applications like
autonomous driving (Hou et al., 2022; Hu et al., 2020; Qi et
al., 2017), street scene understanding (Cheng et al., 2021;
Gu et al., 2022; Liu et al., 2021), and medical image analysis
(Ji et al., 2021; Peng et al., 2022; Zhou et al., 2022). In the
past decade, supervised deep learning methods (Ghiasi et al.,
2021; Liu et al., 2022; Vahdat et al., 2021; Wang et al., 2022;
Wortsman et al., 2022) have significantly pushed forward
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the state-of-the-art performance of this task. However, they
require a large amount of densely annotated images for train-
ing, which is not only laborious and expensive but also limits
their broad use. To overcome this limitation, semi-supervised
methods (Alonso et al., 2021; Kalluri et al., 2019; Ke et al.,
2020; Kwon & Kwak, 2022; Lai et al., 2021; Mendel et al.,
2020; Mittal et al., 2019) require only a small portion of
images to be annotated; weakly-supervised methods (Ahn &
Kwak, 2018; Chang et al., 2020; Lee et al., 2021; Wang et
al., 2020; Wei et al., 2018; Wang et al., 2022; Zhang et al.,
2021) leverage weaker forms of annotations, such as bound-
ing boxes, image-level labels, and scribbles. In this paper,
we focus on a completely label-free, but more challenging
setting: unsupervised semantic segmentation (USS).

USS aims at learning semantic segmentation from a col-
lection of unlabeled images. Without relying on any form
of human annotation, USS removes the substantial labeling
cost, and it can be easily applied to new data or new appli-
cations. In addition, USS can discover novel visual patterns

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-024-02083-x&domain=pdf
https://github.com/MY-LIU100101/IDDC


International Journal of Computer Vision

and structures that are not known a priori (Cho et al., 2021),
which is particularly useful for analyzing images in novel
domains. Despite its importance, USS is a very challeng-
ing problem because of lacking semantic supervision, large
intra-class variation, and severe class imbalance.

Existing methods commonly tackle USS in a two-stage
learning framework. They can be divided into two categories.
The first category of methods generates pseudo labels by
clustering pixel embeddings from pretrained models via K-
means, and then iteratively refines the segmentation (Caron et
al., 2018; Cho et al., 2021; Gao et al., 2022; Yin et al., 2022).
However, their performances could be strongly affected by
initially generated pseudo masks. Moreover, it is difficult
to determine how frequently the two processes should be
alternated: constantly changingpseudo labels can confuse the
feature learning process and produce unstable results (Zhan
et al., 2020), while updating pseudo labels slowly can make
feature learning overfit to the initial label guesses.

The second category of methods, represented STEGO
(Hamilton et al., 2022), learns low-dimensional and clustering-
friendly pixel embeddings, and then groups them into clusters
for USS (Li et al., 2023; Melas-Kyriazi et al., 2022; Pang
et al., 2022; Seong et al., 2023; Van Gansbeke et al., 2021;
Zadaianchuk et al., 2022; Ziegler &Asano, 2022). There are,
however, several limitations. First, the processes of feature
learning and pixel clustering are separated, rather than end-
to-end (i.e., all modules are simultaneously trained). Since
the representation learning process is completely unaware
of the subsequent clustering task, including the number of
clusters and the clustering objective, the model optimization
could be suboptimal for clustering. Second, the clustering
process, most commonly K-means, is generative and makes
strong assumptions about the shape of clusters. It is not
good at handling high-dimensional features and is suscep-
tible to outliers, compared to its discriminative counterpart
(Ng & Jordan, 2001). Third, the severe pixel class imbalance
problem is largely neglected inUSS.Directly integrating rep-
resentation learning and clustering often leads to degenerate
solutions: a few clusters are empty (Caron et al., 2018; Ji et
al., 2019). A straightforward remedy (Ji et al., 2019; Krause
et al., 2010; VanGansbeke et al., 2020) is to enforce that class
labels are evenly distributed, which, however, contradicts the
highly skewed class distribution of pixels in practice.

This paper introduces anovel approach, termed Imbalance-
Aware Dense Discriminative Clustering (IDDC), for USS. It
addresses all aforementioned limitations in a unified frame-
work.

First, IDDC is distinguished by its discriminative design,
which directly outputs pixel-wise classification probabilities
conditioned on the input image. Different from the widely
used K-means, IDDC does not assume the generative dis-
tribution or shape of a cluster. Thus, it is more flexible to
handle the varying feature distributions of different classes

and datasets, more robust to outliers, and better categorizes
pixels in the high-dimensional feature space.

Second, IDDC learns pixel-wise feature representation
and dense discriminative clustering in an end-to-end and
self-supervised manner, through a novel objective function
that transfers the manifold structure of pixels in the embed-
ding space of a vision Transformer (ViT) to the label space.
IDDC coordinates representation learning and pixel cluster-
ing seamlessly, bypassing intermediate learning objectives
such as generating and updating pseudo labels, or learning
dimensionally reduced and clustering-friendly embeddings.

Last but not least, IDDC includes a new regularizer, based
on the Weibull function (Murthy et al., 2004), to handle
pixel class imbalance and cluster degeneration in a single
shot. Entropy has been widely used in existing deep cluster-
ing methods (Barber & Agakov, 2005; Bridle et al., 1991;
Krause et al., 2010; Van Gansbeke et al., 2020) to avoid
empty clusters, by promoting that pixels are evenly assigned
to each cluster. However, the class distribution of pixels in
the real world is highly skewed, caused by the different sizes
and occurring frequencies of each object and stuff. We will
show that our new regularizer can simultaneously model the
skewed distribution and avoid any empty cluster.

Our contributions are summarized as follows:

• We propose a novel approach, named Imbalance-Aware
Dense Discriminative Clustering (IDDC), for USS. It
directly predicts pixel-wise classification probabilities
from an image and jointly learns dense feature represen-
tations and pixel labeling in a discriminative, end-to-end,
and self-supervised manner. Compared with the exist-
ing USS methods, which commonly adopt a two-stage
learning framework and generative clustering, IDDC
addresses their difficulties in coordinating representation
learning and pixel clustering, modeling the imbalanced
class distribution, and handling outliers.

• We design a novel objective function that effectively
learns IDDC by transferring the manifold structure of
pixels in the ViT embedding space to the label space. We
have an in-depth investigation of handling noisy training
signals, caused by pixels that belong to different classes
but are similar in the ViT embedding space. This is crit-
ical to self-supervised dense representation learning and
pixel labeling.

• We introduce a novel regularizer, based on the Weibull
function. It not only avoids clustering degeneration, i.e.,
empty clusters, but also addresses the pixel class imbal-
ance problem in USS. The latter has been ignored by
prior work.

• Experiments on three large-scale real-world datasets
COCO-Stuff-27, COCO-Stuff-171, and Cityscapes show
that IDDC outperforms the state-of-the-art methods by a
large margin. It serves as a new baseline for the nascent
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but challenging task of USS. We validate the effective-
ness of each individual design of IDDC through a large
number of ablation studies.

2 RelatedWorks

2.1 Unsupervised Semantic Segmentation (USS)

USS aims at learning to label every pixel in an image without
any form of human annotation. Early works model USS as
a patch-level grouping problem, where different pixel order-
ings of a patch (Ouali et al., 2020), various augmented views
of a patch (Mirsadeghi et al., 2021), or spatially adjacent
patches (Ji et al., 2019) are clustered together by maximiz-
ing their mutual information. However, they tend to produce
inaccurate segmentation and are mostly applied for segment-
ing stuff, e.g., sky and road, due to their negligence of the
correlation between patches from different images and the
imbalanced nature of the class distribution.

Afterward, pixel-level solutions with cross-image learn-
ing are proposed. They follow two-stage learning strategies:
generating pseudo masks and then refining them, or learning
pixel-wise embeddings and then clustering them. The for-
mer line of work iteratively generates and refines pseudo
masks as supervision. PiCIE (Cho et al., 2021), inspired
by deep cluster (Caron et al., 2018), contrastively learns
descriptive pixel embeddings and iteratively updates a K-
means cluster for generating pseudo masks. PASS (Gao et
al., 2022) learns a self-supervisedmodel and achieves pseudo
masks with the assistance of pixel-attention maps. Yin et al.
(2022) clusters pretrained pixel embeddings using K-means
as pseudo labels, and refines them in a bootstrapping man-
ner. The later line of work, represented by STEGO (Hamilton
et al., 2022), attempts to refine embeddings from pretrained
models and group them using the downstreamK-means clus-
tering. Hamilton et al. (2022) distills dense correspondences
obtained from a pretrained network to learn low-dimensional
pixel-wise features and then clusters them using K-means.
Pang et al. (2022) extracts invariance from video frames to
learn more descriptive features. Seong et al. (2023) extracts
positive pixel pairs for contrastive learning, based on pre-
trained embeddings and local adjacency. Li et al. (2023)
over-segments each image into several regions and clusters
regional representations using K-means for USS.

IDDC differs with STEGO (Hamilton et al., 2022) signifi-
cantly inmodeling, learning, and addressing class imbalance.
(1)Modeling.STEGOfirst extracts low-dimensional features
through distillation and subsequently utilizes the K-means
algorithm for pixel clustering, which assumes spherical dis-
tributions of input features, equal variance across clusters,
and uniform cluster sizes. In contrast, IDDC is discrimina-
tive and directly outputs the classification probability of each

pixel conditioned on the input image; it does not impose any
of these assumptions. Therefore, IDDC is more flexible in
handling varying feature distributions across different classes
and datasets, more robust to outliers, and more effectively
categorizes pixels in the high-dimensional feature space. (2)
Learning. STEGO learns distillation andK-means separately
in two stages. The two stages are optimized under differ-
ent learning objectives, which is suboptimal. For example,
the distillation stage is completely unaware of the clustering
objective or cluster number and therefore cannot adjust itself
based on the need of the clustering stage. In contrast, IDDC
can be trained end-to-end under a unified learning objec-
tive. As a result, it allows representation learning and pixel
clustering to seamlessly coordinate with each other for more
effective learning. (3) Addressing class imbalance. STEGO
clusters distilled features using K-means, which often gen-
erates balanced clustering results (Lu et al., 2019; Xiong et
al., 2006) that are inconsistent with the imbalanced class dis-
tribution. In contrast, IDDC proposes a novel regularization
term based on the Weibull function to address pixel class
imbalance and cluster degradation in a single shot.

2.2 Unsupervised Object-Centric Segmentation

Some works (Van Gansbeke et al., 2021, 2022; Zadaianchuk
et al., 2022; Melas-Kyriazi et al., 2022; Ziegler & Asano,
2022) focus on segmenting objects in an image. They adopt
a two-stage self-supervised learning framework. The first
stage extracts the foreground region or object parts, and
learns their visual representations. The second stage clusters
these regions into different object categories via K-means.
Concretely, Van Gansbeke et al. (2021) extracts foreground
regions via a supervised salient detection network and learns
their features via contrastive learning. Then, K-means clus-
ters the feature vectors average-pooled from each salient
object region to determine their categories. COMUS (Zada-
ianchuk et al., 2022) and MaskDistill (Van Gansbeke et
al., 2022) extract foreground regions using unsupervised
saliencydetection, pixel embeddings, and the attentionmech-
anism, respectively. The extracted regions are then clustered
as pseudo labels for training segmentation networks that
segment multiple objects. Leopart (Ziegler & Asano, 2022)
extracts foreground regions by clustering self-supervised
dense features and then divides them into multiple objects
through community detection. DSM (Melas-Kyriazi et al.,
2022) selects top-k eigenvectors using a spectral segmenta-
tion method to identify object parts, and the feature vectors
average-pooled from each part are clustered by K-means to
obtain the semantic labels.

Theseworks separately learn foreground regions, features,
and clustering, and they only label objects in an image. In
contrast, IDDC learns dense features and pixel clustering in
an end-to-end and discriminative manner, and it labels every
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pixel, including both objects and stuff. In addition, IDDC
explicitly handles noise in self-supervision and pixel class
imbalance, which were not studied in these works.

2.3 Discriminative Clustering

Discriminative clustering aims at learning a discriminative
classifier, i.e., separation boundaries between clusters, from
unlabeled data. Traditional methods optimize mutual infor-
mation (Barber & Agakov, 2005; Bridle et al., 1991; Krause
et al., 2010) and margin maximization (Xu et al., 2004; Zhao
et al., 2008). They aim at balancing class distributions or find-
ing maximum margin hyperplanes from data. Deep learning
methods (Van Gansbeke et al., 2020; Ji et al., 2019; Ouali et
al., 2020; Schmarje et al., 2021; Ghasedi Dizaji et al., 2017;
Chang et al., 2017) follow the idea of connectivity-based
clustering,where pairs of visually similar images are grouped
together. To avoid clustering degeneration, they assume cat-
egory labels are distributed evenly across the dataset.

Differently, IDDC focuses on USS, a dense pixel label-
ing task. Cho et al. (2021) show that directly applying an
image clustering method to pixels does not perform well. In
addition, it is nontrivial to handle the computational over-
head brought by dense labeling. Moreover, we conducted an
in-depth investigation on handling the pixel imbalance prob-
lem and noisy training signals caused by pixels that belong
to different classes but are similar in the embedding space,
which are neglected before.

2.4 Self-Supervised Learning

Self-supervised learning aims to dig meaningful visual rep-
resentations fromunlabeled images. Earlyworks achieve this
goal by solving pretext tasks, such as image inpainting, solv-
ing jigsaw puzzles, and predicting rotations (Alexey et al.,
2015; Bojanowski & Joulin, 2017; Doersch et al., 2015; He
et al., 2020; Komodakis & Gidaris, 2018; Noroozi & Favaro,
2016). Recentworks are primarily based on contrastive learn-
ing (Chen et al., 2020; Chen&He, 2021;Grill et al., 2020;He
et al., 2020). They pull together different views of the same
image, while pushing away different images. After training,
the learned image representation can be used for downstream
tasks.

As global representations are insufficient for dense pre-
diction (He et al., 2019; Purushwalkam & Gupta, 2020),
some research extends image-level methods to pixel-level
ones (Hung et al., 2019; Li et al., 2021; Roh et al., 2021;
Wang et al., 2021) by establishing dense correspondences
across views. Another group of methods exploits the abil-
ity of vision transformer (ViT) (Touvron et al., 2021) that
patch-level similarities are better preserved than convolu-
tional neural networks since they could model long-range
feature interactions (Caron et al., 2021;Hamilton et al., 2022;

Zhou et al., 2021). Our approach uses the pretrained dense
features from a self-supervised ViT as pixel embeddings.

3 Method

3.1 Overview

Unsupervised semantic segmentation (USS) aims at learning
a semantic segmentation model from a collection of unla-
beled images. Given a new image, it will be able to assign a
categorical label to each pixel.

Prior USS methods commonly adopt a two-stage sequen-
tial or iterative learning framework. The first stage is a neural
network that maps an image to its dense features. The second
stage is a conventional clustering algorithm, mostly typi-
cally K-means, that clusters pixels in the feature space. As
discussed in Sect. 1, this framework is plagued by several dif-
ficulties: it is difficult to coordinate representation learning
and pixel clustering because these two processes are sep-
arated, rather than end-to-end; it is difficult to model the
variability of objects and stuff and handle outliers because
K-means assumes a spherical shape of each cluster; it is dif-
ficult to deal with the class imbalance of pixels in the real
world, which is completely ignored.

We propose a novel approach, termed Imbalance-Aware
DenseDiscriminativeClustering (IDDC), forUSS. It address-
es all these difficulties in a unified framework.Anoverviewof
IDDC is illustrated in Fig. 1. IDDC directly models the clas-
sification probability of each pixel conditioned on the image,
without any assumption about the generative distribution or
shape of a cluster. Its network consists of a backbone (i.e., a
ViT pretrained on unlabeled images) that extracts dense fea-
tures from an image and a segmentation head that predicts
the pixel-wise class probabilities (through Softmax). Both
components are learned in an end-to-end, discriminative, and
self-supervised manner, by transferring the manifold struc-
ture of pixels in the ViT embedding space to the label space,
alleviating the adverse impact of noise in pixel affinities,
and handling cluster degeneration and pixel class imbalance.
Concretely, we take advantage of the recent advancement of
the self-supervisedViT: its dense embeddings of images well
preserve the semantic similarity between pixels (Sect. 3.2).
We leverage this manifold structure of pixels to supervise
the learning of IDDC (Sect. 3.3). However, the pairwise pixel
affinities are very noisy: pixels close in the ViT embedding
space can belong to different classes. We have an in-depth
investigation of how to handle the noise (Sect. 3.3). Finally,
we introduce a new regularizer based on the Weibull func-
tion tomodel the skewed class distribution of pixels and avoid
empty clusters (Sect. 3.4).
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Fig. 1 Overview of Imbalance-Aware Dense Discriminative Clustering
(IDDC) for unsupervised semantic segmentation (USS). IDDC directly
models the classification probability of each pixel conditioned on the
image. Its network consists of a backbone (i.e., a ViT pretrained on unla-
beled images) that extracts dense features from an image and a head that
predicts the pixel-wise class probabilities. Both components are learned
in an end-to-end, discriminative, and self-supervised manner, through

a novel objective function that consists of three loss terms. L+ and L−
provide effective training signals for learning semantic segmentation
by transferring the manifold structure of pixels in the ViT embedding
space to the label space and tolerating noise in pixel affinities. LWeibull

is a new regularizer, based on the Weibull function, that avoids cluster
degeneration and addresses pixel class imbalance

3.2 Dense Embedding as Segmentation Hint

Wedemonstrate that the dense embeddings of images learned
by a self-supervised vision Transformer (ViT) are semanti-
cally meaningful. Although there is noise, two pixels closer
in the ViT embedding space are more likely to belong to the
same class.

Given an input image, a ViT-based backbone produces a
dense feature map. Let ui denote the �2-normalized embed-
ding vector of the i-th pixel.We calculate the affinity between
two pixels i and j through the cosine similarity of their
embeddingvectors: ui ·u j . Figure2 shows the distributions of
pairwise pixel affinities calculated on the Cityscapes training
set (Cordts et al., 2016). We show the distributions corre-
sponding to pixel pairs of the same class and pixel pairs of
different classes in red and blue, respectively. The backbone
is a ViT-small model with a patch size 16, pretrained by Zhou
et al. (2021) on ImageNet (Deng et al., 2009) without labels.

We can make two observations from Fig. 2. First, pixel
pairs of the same class are more likely to have high affinities
than pixel pairs of different classes. If the affinity of two
pixels is larger than 0.2 (the crossing point of the two lines in
Fig. 2), they are more likely to be from the same class. This
motivates us to leverage the affinity between two pixels in the
ViT embedding space as a hint to identify their relationship
in the label space, which can be used for learning semantic
segmentation. Second, pixels of different classes can still

Fig. 2 Distributions of pairwise affinities between pixels of the same
class (red) and of different classes (blue). The affinity between two
pixels is calculated as their cosine similarity in the ViT embedding
space

have high affinities, making the aforementioned hint noisy.
It is critical to handle the noise for effective self-supervised
learning.

3.3 Noise-tolerant Learning from Pixel Manifold

We introduce a basic objective function that learns USS
by transferring the manifold structure of pixels in the ViT
embedding space to the label space (Sect. 3.3.1) and alleviat-
ing the adverse impact of noise in pixel affinities (Sect. 3.3.2).
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3.3.1 Learning by Transferring Pixel Manifold

The pairwise pixel affinities calculated in Sect. 3.2 charac-
terize the manifold structure of pixels in the ViT embedding
space. Our basic objective function learns USS by preserving
this manifold structure in the label space. That is, two pix-
els close or distant in the ViT embedding space should also
be close or distant in the label space. Concretely, our basic
objective function consists of a positive term and a nega-
tive term. The former pulls the classification probabilities of
every positive pixel pair together; the latter pushes the classi-
fication probabilities of every negative pixel pair away. Here,
a positive pixel pair means two pixels whose affinity is larger
than a threshold t+; a negative pixel pair means two pixels
whose affinity is smaller than a threshold t−.

To obtain a positive sample pair, we first sample two
partially overlapped croppings in the same image and then
sample one pixel from each cropping to form a positive sam-
ple pair. The overlapping region between the two croppings
guarantees there exist pixel pairs of the same class. The
random geometric transformation perturbs the pixel embed-
ding and augments data, which promotes robust learning and
avoids overfitting. Let ui and u+

j denote the �2-normalized
embedding vectors of two pixels from the two croppings,
respectively, and their corresponding classification probabil-
ities are vi and v+

j . The positive loss term is formulated as:

L+ = 1

N+
∑

∀i, j
w+(ui · u+

j ; t+)h+(vi · v+
j ) (1)

where w+(ui · u+
j ; t+) selects positive pixel pairs by return-

ing ui · u+
j if ui · u+

j is greater than t+ and returning zero
otherwise, N+ counts the total number of positive pixel pairs,
and h+ is a monotonically decreasing function (as the objec-
tive function will be minimized). vi ·v+

j can be interpreted as
the probability that the two pixels belong to the same class if
they are independent. In addition to rejecting pixel pairs that
are not positive,w+(ui ·u+

j ; t+) uses the affinities of positive
pixel pairs in the ViT embedding space to weigh their simi-
larities in the label space. This accounts for the observation
that a pixel pair with a larger affinity is more likely to belong
to the same class. The design of h+ is critical to handling
noise and will be detailed in the following section.

To obtain a negative sample pair, we first sample two crop-
pings respectively from two different images and then sample
one pixel from each cropping to form a negative sample pair.
The negative loss term is formulated as:

L− = 1

N−
∑

∀i, j
w−(ui · u−

j ; t−)h−(vi · v−
j ) (2)

wherew−(ui ·u−
j ; t−) selects negative pixel pairs by return-

ing 1 − ui · u−
j if ui · u−

j is smaller than t− and returning
zero otherwise, N− counts the total number of negative pixel
pairs, and h− is a monotonically increasing function. Min-
imizing L− will push two pixels further away in the label
space if they are more distant in the ViT embedding space.

3.3.2 Tolerating Noise

The pairwise pixel affinities are noisy because two pixels
of different classes can have a high affinity, as illustrated in
Fig. 2. We explore different formulations of h+(·) and h−(·),
and analyze their capabilities to tolerate the noise.

The logarithmic function is widely used in probability-
related loss functions, such as the cross-entropy loss. We
consider:

h+(vi · v+
j ) = − log(vi · v+

j )

h−(vi · v−
j ) = − log(1 − vi · v−

j )
(3)

The logarithmic function is suitable for supervised learn-
ing on well-labeled data because it imposes an asymptotic
infinitely large penalty on incorrect classifications. In USS,
however, noise is unavoidable. Pixel pairs of the same class
can have small affinities, and pixel pairs of different classes
can have large affinities.Using a logarithmic function in these
scenarios will lead to large gradients but in the wrong direc-
tion. It will not allow the network to ignore the noise (because
of the large penalty and gradient), thus severely disturbing
its learning.

The analysis above motivates us to look for a function
whose range is finite in the domain [0, 1]. The linear func-
tion is the simplest one that satisfies this requirement. We
consider:

h+(vi · v+
j ) = 1 − vi · v+

j

h−(vi · v−
j ) = vi · v−

j

(4)

The linear function has a constant slope and will result in the
same gradient regardless of the loss value, i.e., the inconsis-
tency between two pixels’ affinity and their classes. Similar
to the �1-norm used in robust regression (Xu et al., 2008), the
linear function can tolerate noise as long as the noise is not
too much. However, a potential issue is that the learning pro-
cess could focus on the easy cases and ignore the hard ones,
because the loss function treats them equally and optimizing
the former is easier. This hinders effective learning.

Finally, we consider an exponential function:

h+(vi · v+
j ) = exp(1 − vi · v+

j )

h−(vi · v−
j ) = exp(vi · v−

j )
(5)
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Like a linear function, an exponential function has a finite
range of output values and gradients in the domain [0, 1].
But unlike a linear function, an exponential function will
have larger gradients when the loss values are larger and
thus will push harder on hard cases.

In sum, both the linear function and the exponential func-
tion can better tolerate noise than the logarithmic function
because of their limited range of output values and gradients
in the domain [0, 1]. Compared with the linear function, the
exponential function puts more focus on the hard cases than
the easy ones. In USS, it is impossible to distinguish between
hard cases and noise. But our experiments indicate that the
exponential function works better than the linear function,
and both of them outperform logarithmic function by a large
margin. The reason could be that both tolerating noise and
handling hard cases are important to effective learning; the
exponential function can achieve a good balance between
them.

3.4 Addressing Cluster Degeneration and Pixel Class
Imbalance

While the model introduced till now can be used for learning
USS, two critical issues remain. The first issue is cluster
degeneration: there often exist empty clusters. The second
issue is pixel class imbalance: the class distribution of pixels
in the real world is highly skewed, caused by the different
sizes and occurring frequencies of each object and stuff.

Previous discriminative clusteringmethods (Ji et al., 2019;
Krause et al., 2010; Ouali et al., 2020; Van Gansbeke et
al., 2020) address the cluster degeneration problem via an
entropy-based regularizer:

Lentropy =
∑

c

pc log(pc), (6)

where pc = 1

N

∑

∀i
vi,c

where i and c index a sample and a class, respectively, vi,c is
the predicted probability of the c-th class on the i-th sample,
N is the total number of samples, and pc is the frequency of
the c-th class occurring in the training data. It avoids empty
clusters by enforcing a uniform distribution of classes.

However, the class distribution of pixels in the real world
is highly skewed rather than uniform. For example, in the
Cityscapes dataset, the road class dominates and its number
of pixels is more than one thousand times larger than those of
rare classes. This class imbalance problem has been ignored
by prior work in USS.

To address class degeneration and imbalanced class dis-
tribution, we introduce a regularization term to regularize
the learning process. This term serves two purposes. First, it

Fig. 3 Comparison of two regularizers respectively based on the
Weibull (WB) function and entropy. The x-axis is the ratio of the num-
ber of pixels of the rarest class to that of the commonest class. The ratio
ranges from 0.001 to 1. Both regularizers are normalized to have a unit
upper bound

imposes a significant penalty on the presence of empty clus-
ters. Second, it tolerates a skewed pixel class distribution.

As shown in Fig. 3, given the x-axis represents the ratio
of pixels distributed to two categories, an L-shaped function
ideally aligns with the aforementioned two purposes. On one
hand, the vertical part of “L" generates a large loss value,
effectively penalizing the occurrence of empty clusters. On
the other hand, the horizontal part of “L" produces near-zero
loss values on an imbalanced class distribution, enabling pix-
els to be clustered based on their distance in the embedding
space. We model the regularization term as a Weibull func-
tion (Murthy et al., 2004; Weibull, 1951) because its shape
can be flexibly adjusted by its shape parameter k ∈ (0, 1)
and it is differentiable. The smaller the value of k, the closer
theWeibull distribution is to an L shape. Concretely, the pro-
posed regularizer is formulated as:

LWeibull =
∑

c

kpk−1
c exp(−pkc ) (7)

It could be observed from Fig. 3 that, similar to the widely
used entropy regularizer in clustering (Van Gansbeke et al.,
2020), the Weibull regularizer will cause a large penalty in
case of any empty clusters, i.e., when the ratio is close to
zero. But different from the entropy regularizer, the Weibull
regularizerwill cause amuch smaller penalty than the entropy
regularizer when the classes are imbalanced, i.e., when the
ratio is much lower than one.

3.5 Overall Objective Function

The overall objective function of IDDC combines the basic
objective function in Sect. 3.3 and the Weibull regularizer in
Sect. 3.4:

L = L+ + λ1L
− + λ2L

Weibull (8)
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where λ1 and λ2 are trade-off hyper-parameters. L+ and L−
provide effective training signals for learning semantic seg-
mentation by transferring the manifold structure of pixels in
the ViT embedding space to the label space and tolerating
noise in pixel affinities. LWeibull avoids cluster degeneration
and addresses pixel class imbalance.

4 Experiments

4.1 Datasets and EvaluationMetrics

We validate the effectiveness of IDDC on three large-scale
real-world datasets. Cityscapes (Cordts et al., 2016) is anno-
tated for street view understanding, including 27 classes.
It has 2,957 and 500 finely annotated images for training
and validation, respectively. The resolution of each image
is 1024×2048. COCO-Stuff-171 (Caesar et al., 2018) is a
large-scale scene-centric dataset. There are 117,266 training
images and5,000validation images, including171 categories
(80 things and 91 stuff). COCO-Stuff-27 (Caesar et al., 2018)
is a simplified version of the COCO-Stuff-171 dataset, and
is widely used for evaluating USS. Following previous arts
(Hamilton et al., 2022; Ji et al., 2019), 49,629 images are
used for training and 2,175 images for validation. The 80
things and 91 stuff categories are merged into 27 categories
(12 objects and 15 stuff) for evaluating USS.

Following previous works (Hamilton et al., 2022; Cho
et al., 2021; Ji et al., 2019), the Hungarian matching algo-
rithm (Kuhn, 1955) is used to align the discovered clusters
to the annotated classes for evaluation and visualization. The
performance is evaluated via two metrics: mean Intersection
over Union (mIoU) and Accuracy (ACC). IoU measures the
number of pixels common between the ground truth and pre-
diction segments of a class divided by the total number of
pixels present across both segments. mIoU is the average
IoU over all classes. ACC is the number of correctly classi-
fied pixels divided by the number of all pixels.

4.2 Implementation Details

4.2.1 Network Architecture

The backbone networks on all datasets are ViT-based mod-
els (Touvron et al., 2021). They are pretrained by unsu-
pervised methods including DINO Caron et al. (2021) and
iBoT Zhou et al. (2021) on the ImageNet dataset Deng et
al. (2009) without labels. The segmentation head consists of
two convolutional layers activated by ReLU and one convo-
lutional layer terminated by Softmax.

4.2.2 Training

Our approach is implemented in Pytorch. We train the model
with the Adam optimizer and a batch size of 64. The initial
learning rate is 5e−4 for the head network and 5e−7 for the
backbone. We use a polynomial learning rate policy: the ini-
tial learning rate is multiplied by (1− i ter/max_i ter)power

and power equals 0.9. The numbers of training epochs are
5, 20, and 50 for COCO-Stuff-27, COCO-Stuff-171, and
Cityscapes, respectively. The batch size is 64. In non-end-
to-end training, the backbone network is fixed, and the head
is trainable. In our end-to-end setting, the backbone network
is fixed during the initial two-fifths and the final one-fifth of
training epochs. The former avoids the disturbance of the pre-
trained backbone caused by the back propagation from the
randomly initialized head network. The latter guarantees a
fixed supervisory signal for stable learning. Input images are
randomly resized with a ratio between 0.8 and 1.2, randomly
flipped, and randomly cropped to 224×224. Following pre-
vious works (Van Gansbeke et al., 2021; Hamilton et al.,
2022; Ji et al., 2019; Cho et al., 2021), we set the number of
clusters as the number of ground truth classes. The training
takes less than two hours on a single NVIDIA V100 GPU
card, so IDDC is quite efficient.

4.2.3 Hyper-parameters

For COCO-Stuff-27, in the ViT-S/8 experiment, λ1 and λ2
in the overall objective function Eq. (8) are set to 1.4 and
0.25, respectively. The two thresholds t+ and t− used for
selecting positive and negative pixel pairs are set to 0.2 and
0.12, respectively. In the ViT-S/16 experiment, λ1, λ2, t+,
and t− are set to 1.4, 0.4, 0.2, and 0.12, respectively. For
COCO-Stuff-171, λ1, λ2, t+, and t− are 9.0, 0.61, 0.15, and
0.15, respectively. For Cityscapes, they are 0.38, 0.22, 0.2,
and 0.28 in ViT-B/8, and they are 0.25, 0.3, 0.15, and 0.25 in
ViT-S/8.We have conducted extensive ablation studies (Sect.
4.4) on the impact of these hyper-parameters.

4.3 Comparison with State-of-the-Art Methods

We compare our method with the state-of-the-art methods on
COCO-Stuff-27, COCO-Stuff-171, and Cityscapes. For fair
and comprehensive comparisons, experiments are conducted
on different ViT models pretrained by DINO (Caron et al.,
2021) on the ImageNet dataset without labels. The results
on COCO-Stuff-27 are reported in Table 1. IDDC outper-
forms all prior methods by a large margin. Performance on
COCO-Stuff-171 is demonstrated in Table 2. Compared to
the other two datasetswith 27 target categories, COCO-Stuff-
171 has 171 categories. IDDC outperforms other methods,
highlighting its superior scalability to datasets withmore cat-
egories. For Cityscapes, previous methods (Hamilton et al.,
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Table 1 Comparison with the
state-of-the-art methods on the
COCO-Stuff-27 validation
dataset

Methods (Pub’Year) Backbone Acc% mIoU%

Modified DC (ECCV’18) (Caron et al., 2018) R18+FPN 32.2 9.8

IIC (ICCV’19) (Ji et al., 2019) R18+FPN 21.8 6.7

PiCIE (CVPR’21) (Cho et al., 2021) R18+FPN 48.1 13.8

PiCIE+H (CVPR’21) (Cho et al., 2021) R18+FPN 50.0 14.4

STEGO (ICLR’22) (Hamilton et al., 2022) ViT-S/16 52.5 23.7

HP (CVPR’23) (Seong et al., 2023) ViT-S/16 54.5 24.3

IDDC ViT-S/16 59.9 25.8

ACSeg (CVPR’23) (Seong et al., 2023) ViT-S/8 – 16.4

TransFGU (ECCV’22) (Yin et al., 2022) ViT-S/8 52.7 17.5

HP (CVPR’23) (Seong et al., 2023) ViT-S/8 57.2 24.6

STEGO (ICLR’22) (Hamilton et al., 2022) ViT-S/8 47.7 24.0

STEGO+CRF (ICLR’22) (Hamilton et al., 2022) ViT-S/8 48.3 24.5

IDDC ViT-S/8 58.3 25.5

IDDC+CRF ViT-S/8 58.8 25.8

ViT backbones are pretrained using DINO without labels
Best results are highlighted in bold

Table 2 Comparison with
state-of-the-art methods on the
COCO-Stuff-171 dataset

Methods (Pub’Year) Backbone Acc% mIoU%

PiCIE (CVPR’21) (Cho et al., 2021) ViT-S/8 18.5 3.0

TransFGU (ECCV’22) (Yin et al., 2022) ViT-S/8 34.3 11.9

IDDC ViT-S/8 34.3 12.2

ViT backbones are pretrained using DINO without labels
Best results are highlighted in bold

2022; Cho et al., 2021) are evaluated on the center cropping
of the validation images. Specifically, only the 1024×1024
center region (resized to 320×320) from the entire image,
whose size is 1024×2048, is used. In this work, we evaluate
our method on both the center cropping and the entire image
in Table 3 and Table 4, respectively. In all settings, IDDC
outperforms existing state-of-the-art methods.

4.4 Ablation Studies

We conduct extensive controlled experiments to validate the
effectiveness of designs in IDDC. In Sec4.4.1, we prove the
existence of the cluster degeneration phenomenon and the
pixel class imbalance problem. We show how the proposed
regularizer solves both problems in single shot. In Sec4.4.2,
we compare different formulations of positive and negative
terms for noise-tolerant learning. In Sec4.4.3, we validate
the necessity of all three terms in the overall objective func-
tion and the impact of their trade-off hyper-parameters λ1
and λ2. In Sect. 4.4.4, we examine different settings when
selecting the positive and negative pixel pairs. In Sect. 4.4.5,
we explore the impact of the number of training epochs. The
generalization capability of IDDC to different backbones is
validated in Sect. 4.4.6. Finally, the effectiveness of the end-
to-end training is demonstrated in Sect. 4.4.7

We conduct the ablation experiments on Cityscapes full
images. To conduct a large number of experiments more effi-
ciently, we adopt a lighter backbone (ViT-small with a patch
size 16 pretrained by iBoT (Zhou et al., 2021)) and a linear
head. We keep the backbone fixed and only train the head
before Sect. 4.4.7. Our overall objective function includes
three terms; changing or removing one term can lead to a
sub-optimal combination of the trade-off hyper-parameters
λ1 and λ2. Thus, we examine the combination of different
values of λ1 and λ2 for each design to seek optimal perfor-
mance. They are demonstrated in the form of line graphs,
such as Fig. 5, where each point represents an experiment.

4.4.1 Regularization Term

Figure4 validates the effectiveness of the regularization term.
It shows that a) cluster degeneration happens without a regu-
larization term, b) the Weibull function performs better than
the widely used entropy, and c) the proposed regularizer is
more suitable for learning from class imbalanced data.

Figure4a shows that cluster degeneration happens when
learning with positive and negative terms only. The blue
line with star marks indicates that the number of discov-
ered classes is smaller than expected, even though the true
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Table 3 Comparison with
state-of-the-art methods on the
Cityscapes validation dataset
(27 classes)

Methods (Pub’Year) Backbone Acc% mIoU%

Modified DC (ECCV’18) (Cho et al., 2021) R18+FPN 40.7 7.1

IIC (ICCV’19) (Ji et al., 2019) R18+FPN 47.9 6.4

PiCIE (CVPR’21) (Cho et al., 2021) R18+FPN 65.6 12.3

HP (CVPR’23) (Seong et al., 2023) ViT-B/8 79.5 18.4

STEGO (ICLR’22) (Hamilton et al., 2022) ViT-B/8 66.4 19.6

STEGO+CRF (ICLR’22) (Hamilton et al., 2022) ViT-B/8 73.2 21.0

IDDC ViT-B/8 78.0 21.6

IDDC+CRF ViT-B/8 78.6 21.7

TransFGU (ECCV’22) (Yin et al., 2022) ViT-S/8 77.9 16.8

HP (CVPR’23) (Seong et al., 2023) ViT-S/8 80.1 18.4

IDDC ViT-S/8 79.9 22.0

All methods are evaluated on the center croppings of the original images. ViT backbones are pretrained using
DINO without labels
Best results are highlighted in bold

Table 4 Comparison with
state-of-the-art methods on the
Cityscapes validation dataset
(27 classes)

Methods (Pub’Year) Backbone Acc% mIoU%

STEGO (ICLR’22) (Hamilton et al., 2022) ViT-B/8 64.0 19.8

STEGO (ICLR’22)+CRF (Hamilton et al., 2022) ViT-B/8 68.9 20.9

IDDC ViT-B/8 76.3 22.2

IDDC+CRF ViT-B/8 77.0 22.4

All methods are evaluated on the full-size original images. ViT backbones are pretrained using DINOwithout
labels
Best results are highlighted in bold

Fig. 4 Ablation study on the regularization term. a shows the cluster
degeneration happens when training without our regularization term,
but it is avoided when training with our regularization term. b demon-
strates the superiority of the Weibull (WB) function over the entropy

as the regularization term. c compares the class distribution of pixels
obtained by taking the Weibull function or entropy as the regularizer
with the ground truth distribution

number of classes is set in the objective function. In con-
trast, the red line with round marks shows that degeneration
is avoided after including the regularization term. Although
using a large weight for the negative term could also avoid
degeneration in the absence of the regularization term, seek-
ing it is time-consuming in practice. Furthermore, the best
performance without the regularization term is 22.7%mIoU,
which is 3.9% lower than that with the regularization term.

Having verified the necessity of the regularization term
in avoiding clustering degeneration, we now explore an

optimal form of it. Previous methods (Krause et al., 2010;
Van Gansbeke et al., 2020) take entropy as regularization for
the classification task, based on the assumption that labels
spread uniformly across categories. This works well on bal-
anced image classification datasets such as ImageNet and
CIFAR-10/100.However, labels are highly imbalanced in the
semantic segmentation task, as shown by the green bars in
Fig. 4c. Thus, we propose a regularizer based on the Weibull
function. It is an “L” shape function that imposes a large
penalty if there exist any empty clusters but only causes
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Fig. 5 Ablation study on different formulations of h+ and h− and the
effectiveness of their weights w+ and w− on the Cityscapes validation
dataset

small loss values if the numbers of pixels are highly imbal-
anced in different clusters. The line graph in Fig. 4b shows the
performance of different Weibull function settings and their
superiority over the entropy-based regularizer. The red line
and blue line in Fig. 4c respectively show the ranked numbers
of pixels in each discovered class of our proposed regularizer
and the entropy-based regularizer. The results indicate that
the model trained with the Weibull regularizer fits well for
the imbalanced class distribution. Thus, it is more suitable
for IDDC to learn from imbalanced data.

4.4.2 Forms of Positive and Negative Terms

Our positive and negative terms in the overall objective func-
tion are designed to learn USS by transferring the pixel
manifold structure in the ViT embedding space to the label
space and tolerating noise in pixel affinities.Weexamine their
effectiveness in this ablation study. The results are reported in
Fig. 5. The log, linear, and exp in the figure respectively cor-
respond to the three formulations of h+ and h− introduced in
Sec3.3.2. We also report results obtained after removing the
weights w+ and w− from h+ and h−. Table 5 summarizes
their best performances.

We could observe that the exponential function performs
the best, and removingweightswill degrade the performance.
Both the linear function and the exponential function perform
much better than the logarithmic function because of their
capability to tolerate noise, as discussed in Sect. 3.3.2. The
exponential function performs better than the linear function
because the former has a larger penalty on hard cases. The
weights w+ and w− benefit the performance because pixel
pairs closer in the embedding space are more likely to be
from the same class.

Table 5 Ablation study on different formulations of h+ and h−
(denoted as h) and the effectiveness of their weights w+ and w− on
the Cityscapes validation dataset

h Weights Acc% mIoU%

Log – 68.8 20.4

Linear – 77.2 24.4

Exp – 79.5 24.8

Log � 76.8 21.4

Linear � 78.7 25.2

Exp � 80.2 26.6

Best results are highlighted in bold

4.4.3 Necessity of Each Term and Impact of Trade-off
Hyper-Parameters

We conduct ablation experiments to demonstrate the neces-
sity of each term in the overall objective function and the
impact of their trade-off hyper-parameters λ1 and λ2, by
training without the negative term, without the regularization
term, and with different values of λ1 and λ2. The results are
shown in Fig. 6. Their optimal performances together with a
K-means baseline are summarized in Table 6.

We could observe that directly clustering the ViT features
using K-means achieves only 12.4% mIoU and 50.1% Acc.
The performance is improved to 26.6 % mIoU and 80.2%
Acc using our method, which demonstrates the effectiveness
of the proposed IDDC. Table 6 shows removing the regu-
larization term or the negative term leads to a performance
drop to 22.7% mIoU and 23.8% mIoU, respectively. This
indicates that the two terms are complementary to each other
and could work harmoniously for better performance.

Fig. 6 Ablation study on the necessity of the three terms in the overall
objective function and the impact of trade-off hyper-parameters λ1 and
λ2 on the Cityscapes validation dataset
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Table 6 Ablation study on the necessity of the positive, negative, and
regularization terms in the overall objective function on the Cityscapes
validation dataset

Pos Neg Reg Acc% mIoU%

– – – 50.1 12.4

� � – 70.2 22.7

� – � 77.5 23.8

� � � 80.2 26.6

The baseline (first row) clusters the ViT embeddings of each pixel
through K-means

4.4.4 Pixel Pair Selection

We use two thresholds t+ and t− to select positive and
negative pixel pairs. Figure 7a demonstrates the impact of
different values of t+ and t− on the performance. We can
observe that the performance is the best when both thresholds
are set to 0.2. It is worth mentioning that the experimental
results are consistent with the statistical results mentioned
earlier in Fig. 2. Both experiments are conducted on an
iBot-pretrained ViT-small model with a patch size 16. The
intersection of the two lines in Fig. 2 shows that the value
around 0.2 is a good threshold, meaning when the affinity of
two pixels is larger than about 0.2, the distribution of pixel
pairs of the same class on the affinity axis is more concen-
trated than that of pixel pairs of different classes, and vice
versa.When adapting ourmethod to new datasets, we can use
the statistical results on a small number of labeled images to
roughly determine the hyperparameters t+ and t−.

4.4.5 Number of Training Epochs

Wevalidatewhether the number of training epochswill affect
the performance. It is difficult to select an intermediate opti-
malmodel in unsupervised applicationswithout the guidance
of human labels. Thus, if there is a large performance fluctua-
tion during training, the utility of themodel will be degraded.
Figure7b shows the validation performance of the model
after each training epoch. We could observe that there is no

Fig. 7 Ablation study of a the thresholds t+ and t− on the Cityscapes
validation dataset, b and the performance fluctuation at different num-
bers of training epochs on the Cityscapes validation dataset

obvious performance fluctuation, which means IDDC is sta-
ble.

4.4.6 Generalization to Different Backbones

We explore whether the proposed method is effective on
other backbones. The results are shown in Table 7. ViT (Tou-
vron et al., 2021) and XCiT (Ali et al., 2021) are different
vision Transformer models that could produce dense feature
embeddings. XCiT follows a new self-attention mechanism
that operates across feature channels rather than tokens. iBoT
(Zhou et al., 2021) and DINO (Caron et al., 2021) are two
self-supervised learning strategies. iBoT takes advantage of
its online tokenizer, which simplifies the training step.

We could draw three conclusions from the results. First,
IDDC could be generalized to other backbones pretrained
by different self-supervised learning strategies. Actually, it
outperforms previous state-of-the-art methods in all settings.
Second, a backbone pretrained on a larger dataset may lead to
better performance. ImageNet 1k (IN-1K) with 1.2M images
is a subset of ImageNet 22K (IN-22K) with 14M images
(Deng et al., 2009). We can see that models trained on IN-
22K perform better. Third, measured by mIoU, models with
smaller patch sizes are likely to perform better. The patch
size changes the resolution of the intermediate visual repre-
sentations. For example, given an input image size 224×224,
the size of the feature map is 14×14 if the patch size is 16
and is 28×28 if the patch size is 8. In the segmentation task,
a smaller patch size offers more detailed spatial information
and hence benefits the performance.

4.4.7 Effectiveness of End-to-End Training

The end-to-end mechanism allows simultaneous training of
all modules so that they could coordinate well with each
other and learn toward the same target. Results using train-
able and fixed backbone networks (i.e. end-to-end and w/o

Table 7 Ablation study on different backbone networks, different
self-supervised training methods, different unlabeled datasets for pre-
training, and different patch sizes on the Cityscapes validation dataset

Method Data Arch Patch Acc% mIoU%

iBoT IN-1K ViT-Base 16 73.6 26.4

iBoT IN-22K ViT-Base 16 80.5 26.3

DINO IN-1K ViT-Small 16 76.8 24.5

DINO IN-1K ViT-Small 8 78.9 23.1

DINO IN-1K ViT-Base 16 77.4 19.8

DINO IN-1K ViT-Base 8 76.3 22.2

DINO IN-1K XCiT-Small 16 77.5 22.7

DINO IN-1K XCiT-Small 8 76.6 23.1
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Table 8 Ablation study of the effectiveness of the end-to-end training

Training strategy Acc% mIoU%

w/o end-to-end 80.5 26.3

end-to-end 80.2 27.7

end-to-end) are demonstrated in Table 8 respectively. We
could observe that using the end-to-end training achieves
comparable ACC and superior mIoU.

4.5 Visualization

Figures 8 and 9 visualize the segmentation results of our
proposed IDDC and the current state-of-the-art method
STEGO (Hamilton et al., 2022) on the Cityscapes and the
COCO-Stuff datasets respectively. STEGO addresses USS
in a two-stage learning framework. Fig. 8 shows qualitative

results obtained on Cityscapes. We can observe that IDDC
can rectify two deficiencies of STEGO. The first deficiency is
the local segmentation chaos in regions containing multiple
objects and stuff, e.g., the crowded street in d), e), and f). The
second deficiency is the wrongly classified segments, e.g.,
the sidewalk and buildings in b). IDDC can largely address
these deficiencies because its end-to-end and discriminative
learning facilitates better class separation and seamlessly
coordinates representation learning and pixel clustering.

Figuure 9 shows qualitative results obtained on COCO-
Stuff. The aforementioned two problems still exist in the
results of STEGO and could be addressed by our IDDC.
Examples of the local segmentation chaos could be seen in
a) b) c) and e), where noisy segmentation happens at the
boundary region of objects and stuff. Representative example
of wrongly classified segments could be seen in b), where
the wave of water is regarded as a category different from
the ocean and river.

Fig. 8 Qualitative results on the Cityscapes dataset
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Fig. 9 Qualitative results on the COCO-Stuff dataset

5 Conclusion

This paper introduces a novel approach, termed Imbalance-
Aware Dense Discriminative Clustering (IDDC), for unsu-
pervised semantic segmentation (USS). IDDC directly mod-
els the classification probability of each pixel conditioned
on the image and learns pixel-wise feature representation
and dense discriminative clustering in an end-to-end and
self-supervised manner. We propose a novel objective func-
tion that learns IDDC by transferring the manifold structure
of pixels in the ViT embedding space to the label space,
tolerating the noise in pixel affinities, and addressing pixel
class imbalance via a new Weibull regularizer. IDDC over-
comes the difficulties of previous methods in coordinating
representation learning and pixel clustering, handling out-
liers and noise, and modeling the skewed class distribution.
IDDC significantly outperforms all previous state-of-the-art
methods on two large-scale real-world datasets. Extensive
ablation studies demonstrate the effectiveness of each indi-
vidual design.
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