
SAGEBoard: a Whiteboard for Large Multitouch Displays

BY

FILIPPO PELLOLIO
B.S, Politecnico di Milano, Milan, Italy, 2014

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2016

Chicago, Illinois

Defense Committee:

Georgeta Elisabeta Marai, Chair and Advisor

Tom Moher

Franca Garzotto, Politecnico di Milano

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1

2 STATE OF THE ART . 3
2.1 Large Displays . 3
2.2 Whiteboards in Large Multi-touch Displays 9
2.3 Collaborative Tools . 13
2.3.1 Text Based Collaboration . 13
2.3.2 Sketch Based Collaboration . 13
2.3.3 Whiteboard Applications . 14
2.3.4 Comparative Table . 15

3 BACKGROUND: SAGE2 . 16
3.1 Architecture . 17
3.2 Applications . 18
3.3 Touch in SAGE2 . 20

4 METHODS . 24
4.1 Requirements Analysis . 24
4.2 Design . 25
4.2.1 Application Architecture . 26
4.2.2 Drawing interaction . 27
4.2.3 Palette interaction . 27
4.2.4 Node-drawing Module . 29
4.2.5 Palette Module . 31
4.2.6 Annotations . 32
4.2.7 Extended Capabilities: Beyond Drawing 33
4.2.8 Gestures . 36
4.3 Implementation . 38
4.3.1 Input Data . 38
4.3.2 Drawing Data . 39
4.3.3 Multiple Touch Events . 41
4.3.4 Processing the input data . 43
4.3.5 Drawing quality . 44

5 EXTENSION: IPAD APPLICATION 46
5.1 Native Application . 46
5.2 Design . 47

ii

TABLE OF CONTENTS (continued)

CHAPTER PAGE

5.3 Implementation . 48
5.3.1 Data Connection . 48
5.3.2 Display Connection . 50
5.3.3 Additional Features . 51

6 USER STUDY . 53
6.1 Goal . 53
6.2 Hypotheses . 53
6.3 Procedure . 53
6.4 Problem . 55
6.5 Mouse Drawing . 57
6.6 Setup . 57
6.7 Feedback . 58
6.8 Results . 59
6.8.1 Premise . 60
6.8.2 Singular Task . 60
6.8.3 Collaborative Task . 62
6.8.4 Annotations in the User Study 67
6.8.5 Questionnaire Results . 68
6.9 Discussion . 72

7 CONCLUSION . 75

CITED LITERATURE . 77

VITA . 80

iii

LIST OF FIGURES

FIGURE PAGE
1 A SAGE2 Input Client . 18
2 The SAGE2 Overview Client associated with Figure 1 20
3 SAGE2 Radial Menu. 22
4 Two workflows in SAGEBoard. 28
5 The Palette Interface. 30
6 Single user using SAGEBoard. 35
7 The structure of one touch event sent via UDP. 40
8 The way a line is encoded in the server. 41
9 An expert user drawing using SAGEBoard. 44
10 An iPad connected to the server, the red box represents the position

of the iPad focus window inside the whole screen. 49
11 One of the maps used in the user Study. 56
12 The room setup for the user study . 59
13 Overview of the singular task average results in the user study. . . . 61
14 Number of users reaching the time limit in the singular task. 62
15 Average Scores in the Collaborative Task. 63
16 Average Score Differences in the Collaborative Task. 64
17 Two possible situations observed when using the mouse input. . . . 65
18 Whiteboard sharing in the two configurations. 66
19 Results for Questionnaire Questions 1 and 2 69
20 Results for Questionnaire Questions 1 and 2, differentiating users

that used a stylus. 70
21 Results for Questionnaire Question 8 73

iv

LIST OF ABBREVIATIONS

IWB Interactive WhiteBoard

SAGE2 Scalable Adaptive Graphics Environment 2

UIC University of Illinois at Chicago

WIMP Windows, Icons, Menus, and Pointing

v

SUMMARY

Thanks to technological advances, low-priced tiled touch displays have the potential to rad-

ically change the way we work together in collaborative environments, such as a classroom or

a meeting. Whiteboards are an example device that could be replaced by tiled touch displays.

Whiteboards are commonly used in classroom environments to communicate content, improve

the teaching experience, and sketch diagrams or illustrations to better explain complex con-

cepts. They are also very frequently used in meetings or brainstorming sessions, in order to

share ideas between a group of people. In recent years, whiteboards have been increasingly re-

placed by projectors or very large non-interactive displays. These new technologies bear specific

advantages, such as better readability through the use of prepared slides, and improved online

access to teaching materials. However, they also introduce a certain rigidity to the teaching

process: when a student poses an unexpected question, a quick answer or diagram cannot be

promptly sketched.

This thesis proposes an electronic whiteboard for tiled touch displays. An electronic white-

board can combine the advantages of an electronic device with the fast paced interaction pro-

vided by a regular whiteboard, enhancing both solutions with new functions. In this applica-

tion, users can perform classic whiteboard actions such as drawing or writing free-handed on

the screen using their finger or a stylus. They can use brushes to paint, and they can erase

content. However, unlike on traditional whiteboards, users can also relocate content on the

screen, insert figures and drawings, and save or load previous sessions. Moreover, everything

vi

SUMMARY (continued)

can be shared between all the users, and more people can interact simultaneously, improving

the collaborative task.

Creating an electronic whiteboard application poses a number of problems that will be

analyzed and solved in the following sections, contributing to the literature in the human-

computer interaction, computer graphics and software engineering fields. The main graphics

and software problems analyzed are the networked architecture of the application, which needs

to run on multiple displays; the integration of the whiteboard application with other display-

enabled applications; and the management of multiple simultaneous inputs. We also deal

with the problem of rendering the same graphic elements on different sized displays, and how

to keep the solution lightweight enough to be sent over a network without creating a major

latency problem. The interaction problems are the interface design and the analysis of how

people behave when collaborating on a shared touch enabled display. We also analyze how to

deal with remotely controlled collaboration, since the whole application can be shared among

both co-located and remote screens. In this context, we evaluate remote interaction using

mobile touch displays, and we conduct a small scale user study to analyze the advantages of

multi-touch displays over conventional keyboard and mouse configurations.

vii

CHAPTER 1

INTRODUCTION

Everyone that has used one cannot deny the power and ease of use of a whiteboard for sharing

ideas. Even when talking about difficult concepts we use our mind as a whiteboard, building a

concrete example to help us understand.

On the other hand whiteboards have their flaws: some handwritings are very difficult to read,

especially when at a certain distance; long explanations cannot fit the size of the whiteboard,

so previous parts must be erased in order to continue, losing them forever; writing long texts

takes a lot of time, and is painfully boring for the people that try to follow.

Many of these flaws are not present in electronic devices: text and images can be scaled, so

that they can be read from far away. Windows can be hidden and shown again multiple times,

without having to recreate anything from scratch. Files can be saved previously and opened

whenever they are needed, without forgetting about online material, that is becoming more and

more important nowadays.

But all these advantages come at a price, there is way less freedom when using an electronic

device such as a computer and projector combination. Unexpected questions or ideas cannot be

easily answered or explained if no material was previously prepared: writing with a keyboard

in a text editor has way less power than a marker on a whiteboard. Drawing sketches on a

computer is a task ridiculously hard without the aid of dedicated and expensive devices, such

as graphic tablets.

1

2

The application described in this thesis tries to combine the best features of these two

solutions using multi-touch displays, that are becoming so cheap that combining them to cover

an entire wall of a classroom is not so unrealistic anymore.

The feeling of writing with a marker cannot be replaced, the application does not even hope

to reach that level of naturalness. What we try to do is to outweigh the inherited problems of

writing on glass with the multiple functions that an electronic device can bring, the same way

that computers almost completely replaced handwriting.

CHAPTER 2

STATE OF THE ART

2.1 Large Displays

Recent research in large displays has shown that large displays can be helpful in many tasks,

providing improved user experience and better results. This section will talk about some of the

research performed in this field and will try to understand what are the advantages that a large

display can provide.

Tan et al.[1] [2] notice an improvement in the understanding and navigation of 3D environ-

ments when the user has access to a very large display. The improvement is attributed to the

wider field of view the larger screen provides. This wider field of view helps the user gaining

a better spatial awareness, but also creates something called optical flow cues. As a matter

of fact, when navigating in the 3D environment using the large displays, the broader field of

view lets the users see the environment flow at the sides of the screen while they move around,

activating the very sensitive motion sensors in the brain that allow people to perceive not only

the structure of the environment but also their movement within it.

Andrews et al.[3] shows how large display can play a fundamental role in sense-making, as

they provide more space that can be used as a source of information. We use space as a way

to encode informations constantly in our everyday life: post-it notes sticked to the side of the

monitor, soap placed next to the sink, and keys left on a counter are all situations where we

3

4

use space to represent a relationship, or to remind something. When using common monitors

space is a scarce, and therefore valuable, resource, so it cannot be used to encode relationships.

When dealing with very large displays, instead, space regains the meaning that it has in real

life, so something could be placed in a corner if the user thinks it might be needed some time

later, related applications could be placed side by side, and even having a window on top of

another might mean that it is more or less important.

Baudish et al.[4] demonstrates through some user studies how large displays can help the

users to solve complicated tasks that require high cognitive load in a more efficient way. Thanks

to their size large displays can inherently show focus and context together in the same view,

while regular sized screens need to rely on software based solutions that fail to deliver the same

level of naturalness. Being able to see details and an overview of a problem at the same time

makes the users faster and more accurate at solving it.

Czerwinski et al.[5] talks about the great number of benefits that large displays brings, but

also about some new problems that arise when dealing with them. The usual interaction style

used in all common desktop applications, called Windows, Icons, Menus, and Pointing (WIMP),

is not so effective with large displays and creates several issues:

• Losing Track of the Cursor. When the screen size grows, users try to compensate the

growth by increasing the mouse acceleration, but this solution makes it harder to keep

track of the cursor position.

• Distal access to information. As the screen size increases, reaching icons or windows that

are placed far from the user’s position becomes very difficult.

5

• Window management problems. When a notification or a window needs to be created

on a large display, its placement becomes a problem: elements should not appear at

unexpected positions.

• Task management problems. Greater screen size creates problems under the hood too,

with more windows open at the same time, the computational load on a machine increases.

• Failure to leverage the periphery. Large displays create a peripheral zone at their sides,

that could be used for notifications or other features supporting a regular user activity.

Periphery is wasted if used as a regular portion of the screen because, being too distant

from the user, it would never be used.

Moreland [6] also talks about the problem of the WIMP paradigm being wrongly used in large

displays and warns developers to ”Let the application drive the display, not the other way

around”. He notices that too often desktop applications are simply moved to a large display,

and that does not work.

All these research suggests that we should think to large display applications in a completely

different way from desktop ones, the same way we do for smartphone or tablet applications.

Ni et al.[7] provides an extensive overview of research in the large displays field, showing that

research for large displays has been very active in the past decade, leading to great technolog-

ical advancements. The report starts by listing the possible hardware configurations of large

displays:

• CAVE and Derivatives. CAVE Systems are used mostly in virtual reality and they try to

create an immersive environment around the user, they are typically formed by three or

6

more projected-screen arranged to form a cube. A new solution for CAVE systems is to

use tiled screens arranged in a circular manner, like Febretti et al. [8] did.

• Multi-Monitor Desktop. Also called MultiMon, is a configuration that is becoming more

and more popular in both home and offices, and it consists in connecting multiple monitors

to a single computer. Anyway the fact that the monitors are connected to a single desktop

machine limits the number of monitors and consequently the overall size of the composite

screen.

• Projector Arrays. Arrays of projectors are the most flexible configuration in terms of

geometry control, but they are limited in terms of size and image brightness. One of their

biggest advantages is that they create a single huge screen without borders, with seamless

connection between two tiles, but they are very expensive, and they deteriorate after a

while. Pretty soon, in fact, differences in colors between the projectors will arise, and the

seamless screen sensation will be gone.

• Tiled LCD Panels. This configuration consists in a variable number of LCD displays

arranged in a two dimensional array. The screens can be positioned vertically as a wall

display, flat like a table, or even in a curved configuration. They are cheaper than projector

arrays, and they provide better colors. Their greatest weakness is that the screens have

borders separating them, which is really bad for displaying text, but can hardly be noticed

when the screen are showing images.

The paper then goes on talking about the most important applications for large screen displays:

7

• Command and Control. Control centers, where a great amount of data needs to be shown

at the same time with a high level of detail, commonly use large high-resolution displays.

• Vehicle Design. Immersive environments such as CAVEs have been widely used by auto-

motive design industry to display and interact with vehicle models at 1:1 scale.

• Geospatial Imagery and Video. Large high-resolution displays are the perfect media to

show accurate geospatial images and large film-quality video applications. The ability

to show realistic terrain representation, zoom across scales while still providing a good

overview, and the creation of fly-through animations make large screens unbeatable when

it comes to geospatial imagery.

• Scientific Visualization. Large high-resolution displays are perfect for scientific visualiza-

tion because they can both show data at a real life scale and show a great amount of data

simultaneously thanks to their increased number of pixels.

• Collaboration. This is the field in which the application described in this thesis is working

on. Since the basic concept of collaboration is having a shared field where ideas can be

presented or exchanged, large displays enhance the collaboration by providing a bigger

shared field.

• Education and Training. Large high-resolution displays are commonly used for education

and training in many fields, such as astronomy, bioinformatics, medical imaging, urban

planning, and geographic information. The instructor and the student share the large

display in order to present educational material . Thanks to its size the screen can fit

multiple screens of material in view for the students.

8

• Public Information Displays. Large high-resolution displays are becoming so cheap that

they are starting to replace billboards, providing more dynamic images with even better

quality.

Finally Ni et al.[7] proposes a list of major challenges that are still unresolved and should

be addressed in future research, here are the ones that are more related with the application

discussed in this thesis:

• Truly seamless tiled displays. LCD tiled displays have the already mentioned border

problem, while arrays of projectors have problems with variations of colors and luminosity.

We need to find a way to build tiled displays in a way that makes them really look as a

single giant display.

• Easily reconfigurable large high-resolution displays. Currently used display configurations

are very difficult to change, they require hours of realignment. An easier way of arranging

and rearranging reconfigurable configurations should be developed.

• Design and evaluate large high-resolution display groupware. Large displays are very

appealing technologies when it comes to collaboration, but only few applications have been

developed natively for them. Most of the applications used for collaborative interaction

used on large displays are simply an enlarged version of their desktop counterpart, for

this reason they suffer from the scalability issues discussed before. Users perceive large

high-resolution displays in radically different ways due to their form factors, and this

affects the interaction behaviors. Also, large displays create a semi-public environment,

which may affect the privacy of the users and their interactions.

9

• Perceptually valid ways of presenting information on the large displays. When dealing

with large displays perception paradigms are a little different from what we are used to in

regular desktop configurations. New features gain significance, such as the field of view,

the brightness and the resolution. Since this features heavily affect the user’s experience,

the developers should take particular care of how they use them.

• Integrating large high-resolution displays into a seamless computing environment. Portable

computing devices such as tablets or smartphones are now part of everyday life, everybody

has one. Large display applications should find a way to leverage this abundance of per-

sonalized devices to create a more immersive environment around the user. A monolithic

application that cannot connect to a network makes no sense anymore.

2.2 Whiteboards in Large Multi-touch Displays

The previous section was dedicated to a broad overview of applications and techniques used in

large displays, this section will look in greater detail at large multi-touch displays, focusing on

whiteboard-like applications.

Thanks to their resolution and raw screen space large vertical displays can be used by multiple

users at once, offering different collaborative opportunities. Jakobsen and Hornbk [9], [10] show

that people who collaborate using a vertical display with multi-touch can obtain improved

results in terms of the distribution of display area used, the willingness to share parts of the

screen, and the amount of movement performed by users. Different conclusions were obtained

by studies directed at tabletop or horizontal large displays[11] [12]. Even though both of these

latter categories are large displays, their positioning and orientation in space influences the

10

device interaction.

The Xerox Liveboard [13] is one of the first whiteboard applications to be developed for taking

notes during meetings, it is based on a back-projected display and people can draw on it using

a special pen. The application, anyway, has some problems with the image quality and the

pen accuracy. Pen accuracy is, in fact, a current problem in whiteboard applications for large

vertical displays.

Tivoli [14] is another whiteboard application developed for the Liveboard that provides a more

accurate user interface, with more functionalities, and a basic multi-user interaction using

multiple pens. Anyway the number of user is still limited by the number of pens, restricting

the freedom of the application. Moreover, the application cannot be shared between multiple

sites, so it can only be used for meetings where everybody is in the same room.

The usage of the special pen to draw in the case of the Xerox Liveboard [13] was forced by the

technologies available at the time, but it offers the cue for a discussion about the advantages

and disadvantages of using a specialized tool to interact with the display. The major problems

of relegating the user interactions to dedicated tools are:

• Number of users. The specialized tools needed to interact with the display are usually a

scarce resource, there might be just a couple of them. This limits the number of users

that can use the application at the same time, suffocating the collaboration.

• Ease of Use. Even the simple task of taking the pen to write on the screen discourages

the user in using the whiteboard. Constricting the user to use a specialized tool will affect

the naturalness of the application.

11

But using dedicated tools has its perks too:

• User Recognition. The special object can provide some identification to the application,

so that the experience can be personalized. A simple example of this behavior is having

pens that represent different colors.

• Precision. If the application knows the size and the shape of the object used for the

interaction, it can react in a better way to each user input, making assumptions that

could not be done without these additional informations. For instance the inclination of

a touch event could be calculated if the pen tip size at different angles was known.

It is important not to confuse pen inputs with specialized pen inputs: on a display that recog-

nizes every type of touch a pen could, and probably will, still be used to enhance precision.

Some research in multi-touch large displays has been performed also in the educational field

. Agostini and Di Biase [15] show that collaboration in classrooms using large multi-touch

displays brings to good result, engaging the students in the learning process. They conducted

a user study inside an elementary school, using an Interactive WhiteBoard (IWB). Their work

shows how digital native kids are very attracted from this kind of technology and how they

would like to use it in all their classes. The collaboration environment created by the IWB can

shift the usual teacher-centric paradigm to a different approach, where the kids can feel more

involved and learn more.

Ashdown and Robinson [16] show that wall displays with writing capabilities can enhance

speaker presentations, especially when interaction with the audience is needed. They use a

projector based large display, as described in Section 2.1, while the multi-touch input is sim-

12

ulated by infrared pointers that can be pointed at the screen from anywhere inside the room.

The use of pointers to interact with the wall provides an interesting approach that increases

the distance at which the screen can be interacted with, but it also significantly decreases its

freedom, since pointers are a finite resource and they are mandatory to interact with the screen.

Another problem with this approach comes up when the screen is in a crowded room, pointers,

in fact, need a free path from the user to the screen, otherwise their raycast would be blocked.

Anyway, their study shows that not only the quality of the answer to an audience question can

be improved by the presence of a large multi-touch display, but even the question itself can be

better explained by the person who posed it using the interactive wall.

Some work on whiteboards on large touch displays has been done even in the medical field.

France et al. [17] studies how electronic whiteboards can improve efficiency and communication

in the Emergency Department of an hospital. The study conducted on the field points out that

the large touch display solution helps the Emergency Department doctors to understand the

current situation and consequently to come up with a better workload distribution.

Most large multi-touch displays and whiteboard applications do not handle well concurrent

interaction. In fact, the majority of the touch detection systems employed by large displays are

infrared overlays that provide a context which comprises an identifier, an event type and the

coordinates of the touch event. As long as applications for large display remain simple, this

information suffices for interaction. However there are situations in which a user executes an

action through a sequence of two touch-events. In a single-user setting, each user has their own

separate context, and no problems occur. However, in a shared context, the touch of a different

13

user could unwittingly or erroneously complete the first user’s action. As this simple scenario

suggests, multi-user and shared environments pose significant challenges to large multi-touch

display applications.

2.3 Collaborative Tools

With the ”cloud” becoming more and more important in the past years, many tools for online

collaboration made their way into the life of every internet user. Some examples are Google

Docs, CoderPad, or the Adobe Creative Cloud.

This section looks at some of these tools and compares them together.

2.3.1 Text Based Collaboration

Google Docs: Google Docs [18] is the collaborative tool developed by Google that allows

multiple remote users to work together on a single text file. All the users will see the changes

made to the shared document in real time. Every change is saved using a versioning system

that will allow the user to revert some changes at every point during the creative process.

Microsoft Office: All the Microsoft Office[19] suite applications have a built-in sharing mech-

anism, anyway the changes made by other people cannot be seen in real time, the document

needs to be synchronized manually by the user, who is then in charge of solving conflicts and

accept revisions.

2.3.2 Sketch Based Collaboration

CoSketch: CoSketch offers the user a white canvas where he can draw with his mouse, along

with some basic drawing functions. Every sketch has a link and it can be shared with other

14

users, so that they can see and modify the same sketch in real time.

Twiddla: Twiddla is an online shared whiteboard application that can be used both from a

pc using the mouse or on a touch enabled device emulating the mouse (single touch only). It

also offers to the user the possibility of drawing over uploaded files, documents, and even web

pages.

2.3.3 Whiteboard Applications

Tivoli Xerox Whiteboard [14]: Multiuser extension of the Xerox Whiteboard [13] allows

the users to sketch on a blank canvas or annotate over documents, but only on one document

at a time. The collaboration task is enabled only for in-presence collaboration, the whiteboard

cannot be mirrored and interacted remotely.

SMART kapp iQ: SMART kapp iQ[20] is an interactive whiteboard thought for being used

in a classroom. It comes with a maximum size of 65” and it allows both in-place and remote

collaboration using mobile devices. The main screen can be interacted using a pen, limiting

the interaction with the screen to one person at a time. Documents can be opened on the

whiteboard using their proprietary software.

15

2.3.4 Comparative Table

Solution Device Input Canvas Collaboration

Google Docs Web Browser Mouse, Keyboard Shared document
Real-time,

Only remote

Microsoft

Office

Computer Mouse, Keyboard Shared document
Revisions,

Only remote

CoSketch Web Browser Mouse Blank
Real-time,

Only Remote

Twiddla Web Browser Mouse
Blank,

Shared Document

Real-time,

Only Remote

Tivoli

Liveboard

Dedicated

Hardware

Dedicated Pen
Blank,

Document

Real-time,

Only In-Place

SMART iQ

Dedicated

Hardware,

Mobile

Dedicated Pen,

Remote

Blank,

Shared document

Real-time,

Only Remote

SAGEBoard
Web Browser,

Mobile

Multi-touch,

Remote

Blank,

Shared document

Real-time,

Remote,

In-Place

CHAPTER 3

BACKGROUND: SAGE2

In order to solve some problems, such as the inter-application communication, the manage-

ment of different sized displays, and the networking architecture behind all the client-server

requests, our whiteboard application is built inside the second version of the Scalable Adaptive

Graphics Environment (SAGE2) [21].

SAGE2 is an open-source middleware that manages different configurations of displays and

creates an environment that combines them into one single space that can be used by the user as

one single screen. SAGE2 offers a multi-user environment, both collocated and remote, where

users can share documents, images, or even a capture of their screen.

SAGE2 can be accessed through a simple web browser just by navigating on the server page,

both as an input client or a display client.

SAGE2 provides the opportunity of building custom applications that can be instantiated

and interacted in the environment, providing space for the development of custom visualizations

or the enhancement of the system with new functionalities such as maps, timers or clocks.

SAGE2 has been successfully used in class environments, lectures, and meetings. Its ease of

use makes it very accessible even to first time users. The most common scenario in which SAGE2

is used involves a single big display shared between the users in a room, that can connect to the

server, control and interact with the applications currently displayed, open new applications,

or share personal files from their devices to the server. But SAGE2 is not limited to in-place

16

17

collaboration, users could connect from remote locations, both controlling the environment or

mirroring the display. In this chapter we will talk about these and some other features that

SAGE2 offers more in detail.

3.1 Architecture

SAGE2 is a server-client application, where multiple clients connect to a single server. The

clients can be input clients, controlling what is being displayed on the screen, or display clients,

that just replicate the shared screen or part of it.

Big screens can run both as a single giant display or as a number of tiled displays that

present just a part of the canvas. This is particularly important, not only because it enables

the use of tiled displays running on different machines, lowering the price of the infrastructure,

but, especially in the whiteboard case, because users can replicate the shared screen on remote

devices, enabling a different degree of collaboration.

SAGE2 is responsible for synchronizing all the clients in order to replicate the feeling of

having a single shared canvas.

Input clients can move or launch applications, share files, and more in general control the

whole environment. SAGE2 receives the inputs from the input clients and sends the changes

made to all the connected display clients, creating a seamless collaboration experience.

A special kind of display client can also be very useful and will be extensively used in this

thesis: the overview display client. Since SAGE2 is developed to work on different resolutions

and, more often than not, when working with large displays, it is useful to have an overview of

the whole environment on a regular screen, since not every connected client might be a large

18

display. In the overview client the whole SAGE2 canvas is scaled to fit the user browser window,

but the system is still completely functional and reactive even in this view.

Figure 1: A SAGE2 Input Client

3.2 Applications

Users can create applications for SAGE2 with minimal efforts: the applications are written

in javascript and they are represented by a div inside the shared canvas. The user is free to

manipulate the application div in any way he wants using javascript, and he can analyze server

inputs such as clicks and keyboard events using the SAGE2 APIs.

Inputs cannot be managed in the usual javascript way because no events are really being

19

performed on the display clients: they come from remote input clients. The SAGE2 server is

in charge of analyzing the remote input and communicate it to the proper application on all

the display clients.

Users can upload their applications even on already running servers, just by uploading them as

a regular file from their input clients, providing an incredible degree of freedom to the server.

The SAGE2 server comes with many applications already installed, in order to perform basic

tasks. Here is a list of some of them:

• PDF Viewer: This application is very important to the purpose of this thesis, it is a

simple application that displays PDF documents uploaded by the user. This application

is one of the few that cannot be launched from the application list, it is opened by the

system when the users uploads a PDF document.

• Image Viewer: Another default application opened by the system when the user uploads

an image, it displays the image and allows the user to scale it any way he wants.

• Cronograph: An SVG clock that shows the current time with a theoretically infinite

resolution.

• Google Maps: An application that allows the user to navigate Google Maps on a SAGE2

server, allowing collaboration and sharing of geospatial informations.

In Figure 2 we can see some applications in action: a cronograph in the top-left corner of the

view, an image uploaded from the user displayed with Image Viewer in the top-center, the

Google Maps application in the top-right, a user custom application that displays the Calvin

20

and Hobbes strip of the day in the bottom center, and finally a PDF document uploaded by

the user displayed thanks to the PDF Viewer in the bottom-right corner.

Figure 2: The SAGE2 Overview Client associated with Figure 1

3.3 Touch in SAGE2

Touch interactions is supported in SAGE2, but it is a rarely used experimental feature. The

touch interactions are not really managed for what they are, instead they are used to simulate

21

pointer events, as commonly seen in online applications that can be used by touch based devices

such as tablets.

The advantages of this approach are its ease of implementation and its abstraction of the

input device. However, considering the touch event as a more abstract type of input, we

lose many possible informations about it that could be useful. An example of this loss of

informations can be found in the size of the touch event: pointer interactions do not have a

size, so the abstracted touch event loses this potentially useful feature. Another problem is

given by the completely different nature of the inputs, consider the common right button click

on a mouse: what does it correspond to in touch interactions? A simple answer could be a two

finger touch, but think about it: now two touch events are mapped to only one input. This

solution creates a plethora of new problems: touch events cannot be mapped directly to mouse

events, they need to be checked every time for simultaneous events in their surroundings, and

there is not a one to one relationship within them.

The abstraction approach offers anyway too many advantages in a very input dependent

system such as SAGE2, so that is the road the SAGE2 team decided to take. The solution

developed, in order to spare the server from dealing with all the problems mentioned earlier,

was to defer the touch interaction analysis to the sender. The client sending the touch events

is in charge of understanding what the touch event means, and to communicate it to the server

using a dedicated protocol. This solution asks the clients for a lot of work, and this is what

makes it still an experimental feature.

22

Figure 3: SAGE2 Radial Menu.

Common scenarios of touch interaction in SAGE2 are the single touch interaction, where

the touch and drag on the display is interpreted as a click and drag with a mouse pointer, and

the three-touch gesture, used to emulate a right click on a mouse. Figure 3 shows what happens

when a user performs either a three finger touch or a right mouse click on a free portion of the

canvas: the radial menu opens. Through the radial menu the user can open applications or

documents, giving a touch display client all the functionalities of an input client, in this way

the user does not need to step away from the touch screen to perform any operation.

In conclusion, touch interactions in SAGE2 are possible and perfectly functional, but they

need to be preprocessed by the client before being sent to the server, and they are still processed

23

as pointer events by SAGE2. That is why we had to completely rethink touch interactions in

our application starting from the raw data, drawing would have been impossible using the

emulated mouse interaction.

CHAPTER 4

METHODS

SAGEBoard was developed over a period of 4 months through a close collaboration with sev-

eral wall-display and networking experts. The development followed a Human-Centered-Design

paradigm, while paying particular attention to user tasks and nonfunctional requirements. We

implemented this paradigm through an iterative process where we met with experts and regu-

lar users to confirm requirements, explore prototypes, refine the design, test the software, and

verify that requirements were being satisfied.

4.1 Requirements Analysis

Requirement gathering started with a semi-structured interview of the experts, followed by

several observation sessions of instructors and students interacting with both wall displays and

with regular whiteboards. The requirements we gathered include the following functional and

nonfunctional elements:

• provide both a canvas and a control panel (palette or marker and eraser station)

• large scale and multi-user

• high-fidelity and responsive when drawing and writing

• touch-enabled, with fluid use of touch gestures (e.g., some users erase with the back of

their hands)

• be able to annotate over other applications (e.g., pdf docs)

24

25

• undo, save, reload and clear-all capabilities

• resize and relocate content

• always float in front of other applications

4.2 Design

We started by creating a series of low-fidelity and high-fidelity prototypes, including story-

boards, to illustrate potential visual layouts and interaction flows. Our first prototypes pictured

SAGEBoard as a common SAGE2 application, it consisted in an opaque canvas that the user

could scale and move among all the screen, with the actions palette attached to one of its

borders like it is done in most drawing softwares. The application would have handled touch

as every other application in SAGE2: as a pointer input simulated by the server through the

process described in Section 3.3. We already described why and how this process brings to a

loss of precision, but we thought we could give it a try.

So we developed our first high-fidelity prototype: a functional drawing application for

SAGE2. We quickly realized that this solution was not the best one, for a lot of reasons:

• The opaque canvas occluded the other applications, preventing the user from annotating

over documents or applications.

• The canvas was being occluded as well by other applications, while we wanted the drawings

to always stay in front of everything.

• The reduced canvas size meant a reduced multi-user interaction, limiting the space for

collaboration.

26

• The canvas, if increased in size in order to collaborate, wasted a lot of precious space,

that could have been used by other applications.

• The simulated touch system was completely unreliable, lines were staggered and the

overall drawing experience was awful.

After these findings we got back to prototyping and considering all these elements we decided

that SAGEBoard should have been embedded inside the SAGE2 server, it should have taken

the touch data directly from the source, and that the canvas should have been transparent and

as big as the whole screen. We describe in the following sections the resulting architecture of

our second high-fidelity prototype .

4.2.1 Application Architecture

To build an application integrated with the sharing middleware, we need to take into account

the following SAGE2 components:

• The SAGE2 Server, which represents the SAGE core

• The Touch overlay: the system dedicated to touch input detection.

• The Display: the client window of SAGE.

Our application consists of two components built on top of SAGE2:

• a Node-drawing module: the software representing the SAGEBoard application on the

server.

• a Palette module: the client application used for the application interface;

27

These modules are described in detail further below in Section 4.2.3.

We briefly describe here the two main workflows characteristic to the application: the

Drawing interaction and the Palette interaction (Figure 4). For simplification purposes, the

touch input flow is shown as going directly from the touch overlay to the Node-drawing module,

even though (as described below) the touch input is processed by a secondary machine. In both

cases the interaction starts with a user touch that is captured by the touch overlay, processed

by the underlying components and then sent to the Node-drawing module.

4.2.2 Drawing interaction

The Drawing Interaction workflow (Figure 4.a) starts with a user touching directly the

display (A) with the intention to draw or edit a drawing, without accessing the palette. When

the touch occurs, it is sent to the Node-drawing module (B). Since the module is aware of the

palette position, it recognizes that the touch occurred without accessing the palette. The touch

is thus allowed to update the drawing state. The Node-drawing module then identifies the

connected clients that are observing the wall-display section affected by the touch, and sends a

message to the server (C) summarizing the differences between the previous drawing state and

each affected client. Once it receives the message, the server notifies all the involved clients of

the new drawing state (D).

4.2.3 Palette interaction

The Palette Interaction workflow (Figure 4.b) starts with a user touching the display (A)

with the intent to invoke a Palette function (and therefore pressing a palette button). The

touch is sent to the Node-drawing module (B), which is aware that the touch has occurred

28

Figure 4: Two workflows in SAGEBoard.

29

within the palette area. Consequently it sends to the server (C) a message containing the touch

coordinates and the involved client. The server communicates to the client that a palette touch

occurred (D). The client interprets the touch event and figures out which palette button is

pressed, then generates a visual feedback for the user. Each palette button is connected to a

specific server call (E). Once the server receives the message, it sends a specific message back to

the Node-drawing module (F). The module then changes the drawing state and communicates

the corresponding action to the clients.

4.2.4 Node-drawing Module

From a hardware point of view, the touch overlay is mounted around the wall display. When

the touch overlay mode is activated, the SAGE2 server connects to both the large vertical display

and, through a secondary machine, to the touch overlay. This secondary machine has the role

to fetch and prepare the raw touch data for the server. This means that even though the

touch overlay is mounted on the display, these two components are connected to two different

machines and must be handled as separate entities.

From a software point of view, the SAGEBoard application runs on the server through its

Node-drawing module. Multiple clients aside from the Whiteboard application can connect

to the SAGE2 server and, through it, to specific displays in the tiled wall. We handle in the

Node-drawing module the connect/disconnect requests from clients. We further record which

client is connected to what display, in order to send client updates only if its display part

is involved. The Node-drawing module also stores the current drawing state. We implement

this configuration using an observer pattern: the subject being observed is represented by the

30

Figure 5: The Palette Interface.

drawing state contained into Node-drawing and the observers are represented by the display

clients.

31

4.2.5 Palette Module

Users can interact with the application using the palette interface shown in Figure 5. The

palette is an application built for the SAGE2 server. The palette is designed with scalability

and ease of use in mind: thanks to its SVG-based interface it can be scaled without any loss

of precision, allowing it to work both on very large displays or on smaller ones, such as tablet

displays. All the buttons in the interface are rectangles, in order to be very easy to press even

on displays with not enough touch precision to deal with circular buttons.

Upon activating the palette, an SVG canvas appears on the screen along with a recall bar

in the lower part of the screen. From that moment on the detected touches get redirected

to the Node-drawing Module, and the users are allowed to draw on the screen. The drawing

functionality can be deactivated either by closing the palette or by pressing the Enable/Disable

button on it. The Enable/Disable switch allows the users to switch back and forth between the

drawing mode and opening other applications or documents, which the users can then annotate.

This functionality was not present in the first release of the application, but it was introduced

later due to users’ demand, proving once again how a design cycle involving frequent testing

sessions helps developing complete applications. Once the user has opened the document she

wants to annotate, she can revert to drawing by pressing the palette.

The palette can also be moved around on the screen by the users just by performing a

dragging gesture starting from its title bar. This was at first the only way to move the palette,

but after the first testing session we noticed that often the users ended up drawing very far

away from the palette and they had to walk across all the screen in order to move it. While

32

this problem would not arise with standard size displays, in very large displays it can not be

overlooked, so we decided to introduce the recall bar. The recall bar is located in the lower

section of the screen, and when a user touches it, the palette moves directly to the horizontal

coordinate of the touch event, allowing faster interactions.

4.2.6 Annotations

SAGEBoard allows the users to annotate over many kind of documents, that can be shared

by any of the user using an input client, or the touch interactions provided by SAGE2. Thanks

to this functionality the application allows a new degree of collaboration, that is not possible

using physical whiteboards.

Once a document is displayed on the screen using one of the functionalities explained in

Section 3, the user is completely free to draw anything over it. This is possible because the SVG

canvas containing all the drawings floats above all other applications, except for the SAGE2

pointer and the palette. Thanks to its transparent background the canvas does not hide the

applications lying under it, allowing the user to see what they are drawing over.

After the user draws something on the screen, the drawing is analyzed searching for appli-

cations lying under it. If an application is found to be directly beneath a point contained in

the drawing path, then that drawing gets associated to that application by the system. This

behavior allows the annotations to follow the document they are drawn over when the document

is moved around the screen.

33

4.2.7 Extended Capabilities: Beyond Drawing

The application can be used in two different modes: the whiteboard mode and the painting

mode. The main difference between these two modes is the result of large-size touch events. In

the whiteboard mode a large-size touch is interpreted as an eraser, so that an imaginary user

can easily erase a spelling error using her whole hand or sleeve. In painting mode, on the other

hand, the stroke size of the line drawn on the screen is the same as the touch size, so a large-size

touch is simply interpreted as a large stroke line.

The user can toggle between the two modes by pressing the switch mode button on the

palette panel. The switch mode button is represented by an image of a brush, which represents

the painting mode, and a pencil, which stands for the whiteboard mode. The icon relative to

the currently active mode is highlighted by a white outline, in order to make the user always

aware of the current application mode.

Beyond basic drawing, the functions available to the user are as follows:

• Clear Screen: Allows the user to erase all the drawings currently shown on the screen.

• Undo: Lets the user erase the last line drawn on the screen. The user is allowed to undo

a virtually infinite number of drawings: the system keeps track of the order of all the

drawings made.

• Redo: Allows the user to redraw items previously erased using the undo function.

34

• Change Stroke Color: The user can select a color from the list of colors shown on the

palette or pick one using the color picker. The marks drawn on the screen from that

moment on will be of the selected color.

• Selection: The first touch interaction after the user presses the selection button inside the

palette is interpreted as a selection creation. The user can create a rectangular dashed

box surrounding the drawings she wants to select. The selection box will persist on the

screen until a new drawing is drawn on the screen; at that point the selection box will be

deleted. An example of this function is shown in Figure 6.

• Relocating a Selection: When a touch event occurs inside a selection box, it is interpreted

as a moving selection interaction. All the drawings inside the selection box will be shifted.

• Resizing a Selection: Inside the selection box, at the right bottom corner, we provide

a smaller box, called the resizing box. If the user starts a touch movement inside the

resizing box, the box will follow the movement, scaling the selection box and all its

contents accordingly.

• Save Session: The current drawing state gets saved on the server, in a file labeled with

the timestamp of the interaction.

• Load Session: The user is presented with the list of saved drawing sessions on the server.

By selecting one of them the system will load that drawing state, and discard the current

one.

35

Figure 6: Single user using SAGEBoard.

• Take Screenshot: When the user presses the screenshot button, a PNG file representing

the current state of the screen is saved on the server.

• Change Stroke Size: This functionality is available only in whiteboard mode. Pressing

on the plus and minus buttons next to the stroke indicator on the palette will change the

stroke size.

Figure 6 shows a user writing and then performing a selection operation on SAGEBoard.

As you can see the writing seamlessly spans multiple tiled displays.

36

4.2.8 Gestures

As we already talked about in Section 2.2, one of the greatest problems when dealing with

multi-user and multi-touch whiteboards is the management of gestures composed by more than

one touch. How can we understand if a touch is part of a user gesture or if it is simply part

of another user drawing? The simple answer is that we cannot. The more complex one is that

we could, using some sort of user recognition device, such as cameras tracking the users and

their positions, or using dedicated devices as inputs that are associated with each other: a user

could be forced to use only pens tagged with a color that the system knows are associated.

We already talked about the disadvantages of using dedicated devices as the only form of

input, while the camera tracking system would increase the complexity of the system by far,

without even helping with the most difficult situations: when the users are too close to each

other to be recognized.

The only other solution to the problem becomes then a heuristic: assuming that two touch

events are generated by the same user if they are very close. This approach automatically rules

out gestures made with two hands, but that is not a great limitations: one hand still provides

plenty of possible gestures.

In the first implementation of SAGEBoard we followed the heuristic road: before assigning

the action to a touch event the system waited for a little timeout, and, if another touch event

occurred at a distance lower than an arbitrary threshold before the timeout, the two identifiers

would have been associated in the system as part of the same gesture and their state machines

37

would have transitioned to the gesture state. The system was theoretically sound and working,

but the first testing session revealed an unexpected problem.

The problem was related to the touch overlay: since the screen we use is very big, the touch

overly needs to be as big, and this unusual size makes it not very precise. The touch overlay

detects touches way before the user actually touches the screen; this causes a lot of accidental

touches, especially when the user is interacting with the screen with his hand: the fingers that

are not used to touch the screen might be detected as well, since they are very close to it. If

an accidental touch is detected as a drawing touch, it could be annoying, and it would affect

the drawing quality, but it could still be acceptable. If an accidental touch is detected as part

of a gesture, instead, it makes the user interaction impossible: a user trying to draw would

continuously trigger the behavior associated to the gesture instead of drawing.

This problem, anyway, was only associated with a faulty hardware, so we thought that the

gesture capability could be activated only on systems precise enough to handle it. However

a second testing session on a less faulty hardware highlighted another problem in the system.

When trying the application without the wrong gesture detection we noticed that the timeout

needed to recognize the gesture, summed with the inevitable latency provided by the network,

created an unacceptable delay between the actual touch interaction and the system feedback.

We noticed that it is almost impossible to write properly even with a very little delay.

All these problems convinced us to drop the multi-touch gestures completely, since they

were creating a lot of problems without providing a comparable amount of advantages. We

kept anyway the gestures based on the size of the touch, such as the eraser touch, and we

38

introduced gestures based on the location of the touch, such as the recall bar, in order to get

back some of the advantages that multi-touch gestures gave to the system.

4.3 Implementation

4.3.1 Input Data

The user data input comes from an infrared touch overlay. This overlay is connected to a

Windows machine that sends the data to the server running SAGE2, through the network. The

data coming from the overlay is processed on the Windows machine by a C++ program, that

converts it to the format used by the server.

The touch data is sent using UDP messages structured in a predefined protocol, that could

also be used to simulate touch events coming from non-touch devices. This simple protocol

definitions allows the application to be input independent: data coming from any kind of touch

input could be converted to this simple structure, hiding the real complexity of the data from

the server.

Thanks to the great speed of the UDP protocol the server gets very quickly the location of

all the touches occurring on the screen. Each touch event is characterized by a source identifier,

a location, and a type. The source identifier is common to all the touch events contained in

a single touch interaction: if the user draws a line with her finger on the screen, all the touch

events generated by this interaction will have the same source id. The location is composed

by the x and y coordinates of the touch, normalized with respect to the touch input size. The

normalization is needed because in many occasions the touch input device and the screen on

39

which it is mounted on have different resolutions. The type of the touch event can assume three

different values:

• Touch Down: It represents the first touch event of an interaction, and it is sent when the

user first touches the screen. There is only one touch down event associated with each

source identifier.

• Touch Move: It represents a movement of a given touch interaction, and it is sent when

the user moves his finger on the screen. There can be many touch move events associated

with each source identifier.

• Touch Down: It represents the last touch event of an interaction, and it is sent when the

user detaches the finger from the screen. There is only one touch down event associated

with each source identifier.

The structure of the UDP message can be observed in Figure 7. As you can see the position

is normalized before being sent. The touch event type shown in this particular message (4)

represents a Touch Move.

4.3.2 Drawing Data

The state of what is drawn on the screen is stored on the server in a compact format,

designed to minimize the network load, and consequently latency. Because the input data

could be streaming at high rates, rendering without processing would have disadvantages: the

size of the drawing data stored on the server would be massive, the network would be really

stressed, since all data saved on the server needs to be sent to all the clients, and lastly the

40

Figure 7: The structure of one touch event sent via UDP.

resulting drawings would look staggered, because of the low precision passed by the touch

overlay.

For these reasons, we sample the input data and keep only the points needed to render fairly

smooth and faithful lines, the sampling interval has been determined empirically. The points

are interpolated on the client side by a D3.js function that connects them to produce an SVG

path. Each drawing is then associated with a drawing identifier which allows us to later modify

or delete the drawing, and a style object, which defines how the drawing will be rendered on

the client side.

Thanks to the determinism of the interpolation function the drawings are identically rep-

resented on each display, regardless of the browser used. Figure 8 shows how a line is really

41

Figure 8: The way a line is encoded in the server.

encoded in the server: the left image shows the line as it is presented on the display clients,

while the right image shows the points associated to that line saved on the server.

4.3.3 Multiple Touch Events

Our approach in handling multiple touch events consists in a state machine pattern: associ-

ated to every touch identifier there is a state, and the state determines what actions should be

taken when a new event with that identifier is received. In this way we can manage multiple,

coexisting touch events originating from different users.

The state machine is encoded in the system as a dictionary where the key is a touch identifier,

while the value associated to it is a string representing the current state, or action. We also

keep track of all the drawings that a touch identifier generates using a dictionary, so that undo

actions can be easily performed.

42

However, a problem arises when identifiers are no more unique: some systems, including our

touch overlay, recycle identifiers in a cyclic manner. This behavior could cause conflicts in our

system, and touch events could be misinterpreted. Our application deals with this problem by

clearing all the informations relative to a touch identifier when its touch release event is received,

so, as long as two simultaneous touch events always have different identifiers, no conflict can

arise.

Thanks to this approach, at any time SAGEBoard deals with an event, it is fully aware of

its state and simultaneous touch events cannot interfere with each other. Moreover, thanks to

the state machine pattern, it is very easy to take appropriate actions when a touch is received.

But multi-user interactions produce another problem: conflicting interactions. An example

of this problem is when two users are simultaneously trying to move the palette in different

directions, what should happen in that case? Our solution to this problem is to treat elements

where possible conflicts could arise as scarce resources, and serve them on a first come first

served basis. Whenever a user wants to access one of these resources there are two possible

scenarios: either the resource is free, meaning that nobody else is using it, or it is already taken.

If the resource is free, then we can simply let the touch event use it, and mark it as busy until

the owner event is released. If the resource is already taken the touch event transitions to a

sink state: the Ignore state. If the state machine associated with a touch identifier is in the

ignore state, all the events bearing that identifier are completely ignored, apart from the release

event, that erases the identifier from the state machines dictionary.

43

4.3.4 Processing the input data

When the server receives input data, it sends them to the Node-drawing Module, which

interprets the touch input, determines what action the user wants to perform, and changes the

state of the server to correctly respond to the user interaction. An action is associated with

each source identifier using a dictionary, as explained in Section 4.3.3. The action is determined

when the touch-down event of that particular identifier is received. The decision is based on a

multi-layer, four-level priority system, from highest to lowest:

• First level: Interaction with the palette. It happens when the touch is located inside the

palette title bar, the palette window, or the recalling bar on the lower part of the screen

• Second level: Selections. It happens when the user first touches the screen after pressing

the selection button on the palette, or when the touch is detected inside of a selection

window already present on the screen.

• Third level: Eraser. It is detected when the user is in whiteboard mode and the size of

the touch is bigger than a predefined size.

• Fourth level: Drawing. It is the default action assigned to each touch that does not fall

in one of the preceding categories.

Another possible action assigned to a touch identifier is the Ignore action. This means that

the system will ignore all the following touch events related to that particular identifier.

In general, touch events cannot change their effect during their lifespan, with the exception

of the Eraser touch. A touch that started as a drawing can become an eraser if its size grows

44

Figure 9: An expert user drawing using SAGEBoard.

bigger than the predefined eraser threshold. This decision is driven by the fact that when a

big object touches the screen, the first touch is rarely due to the whole surface touching the

display: the first part to reach the screen is usually a corner. Such a behavior would result in

the mistaken detection of an eraser-sized object at the touch-down event.

4.3.5 Drawing quality

The resulting quality of the drawings on SAGEBoard is heavily dependent on the quality of

the input hardware, we tested it on a small display with a highly precise touch overlay and the

drawings were flawless. However, the large screen used to test the application in its full scale

has a not very precise overlay, and this may result in some discomfort for the first time users.

Anyway, after a short adaptation period the users are able to write, and especially draw, much

45

more accurately. Figure 6 shows how a frequent user can write on the wall: the quality is not

very high, but it is definitely acceptable, considering that we are not used to write on vertical

surfaces. Drawing is instead way easier, Figure 9 shows how an expert user could reproduce

Van Gogh’s famous painting, Starry Night, using only her fingers and a brush.

CHAPTER 5

EXTENSION: IPAD APPLICATION

After developing SAGEBoard we noticed that touch overlays on very large displays were

often not very precise. We tested the application on smaller displays and the accuracy was far

better, enabling precise drawing and writing, but the smaller size limited the collaboration, due

to the inevitable space occlusion.

We also noticed that, in general, it is far better to write on horizontally placed displays

than vertical ones, probably because of the way we are used to write in real life.

For all these reasons we decided to develop a mobile application that allows remote in-

teractions with SAGEBoard using a tablet. In this chapter we will discuss the challenges we

encountered developing this extension and how we solved them.

5.1 Native Application

At first we thought about developing the extension as a web application, so that many

different devices could access it just using a web browser, but after a brief research we decided

that it was not possible. Web browsers, even on tablet, use the touch events to simulate a

mouse pointer, losing all the valuable informations contained in the raw touch data.

A native application, instead, can leverage all the informations related to the touch events,

allowing the interaction to be smoother and more accurate. Lastly, but still very important,

simulating a pointer event on a tablet means losing the multi-touch capability: there cannot

46

47

be more than one simultaneous pointer interaction. In a native application all the touch events

are reported to the system, and multi-touch can be managed in the ways we will explain in the

following sections.

The choice of the iPad was dictated purely by mere availability: we had an iPad available

to use and we decided to develop the extension for it.

5.2 Design

The application needs two different connections to the server:

• Data Connection. Needed to send the touch input data to the server.

• Display Connection. Needed to show what is currently visible on the collaborative canvas

of the selected server, in order for the user to see where he is drawing.

Surprisingly, the data connection turned out to be the simplest one. Using a Swift library

called SwiftSocket [22], we simply open a UDP connection with the server and send the touch

data analyzed on the tablet using the same protocol we describe in Section 4.3.1. As you will

see, instead, the display connection is not as easy as it seems.

At first we were not sure about including the display visualization in the application, but

after the first tests we noticed that writing, and even more annotating, was impossible without

directly seeing what we were writing over. After the decision was made, we had to think about

how to display a very large screen on a pretty small display. Another problem was given by

the intrinsic tileable nature of SAGE2: which display should we connect to? If we connected

to an arbitrary display, drawing over its borders would have been impossible, so we decided to

connect to the overview display.

48

The overview display gives a scaled version of the canvas that can fit the client browser

size, as we explained is Section 3.1. At first we tried to use the overview client directly, so the

drawings made on the tablet were scaled back to the original size of the canvas, but, especially

with very large displays this method turned out to be completely unfeasible. It is impossible

to write if an error of one pixel is translated to 20 pixels on the original screen.

Once we decided that using the overview client as it is was not a good idea, we thought

about what would have been the better way to write on a big screen using a smaller device.

The solution we found was the simplest one: we can navigate the big screen using a window

having the same size of the device and write on that, so that our drawings can be reproduced

with a one to one scale on the screen.

In some cases most of the display might be empty, making it difficult for the user to un-

derstand where the device screen is located with respect to the whole canvas. To overcome

this problem we decided to show the user his position on the display using a colored box. This

solution also creates a visual feedback for the other users, allowing them to see how many people

are currently connected with a remote device and where they are planning to draw something.

This approach is explained in Figure 10.

5.3 Implementation

5.3.1 Data Connection

As already mentioned in the previous section, we use an open source Swift library called

SwiftSocket [22] in order to send UDP messages to the server.

49

Figure 10: An iPad connected to the server, the red box represents the position of the iPad
focus window inside the whole screen.

50

It is technically wrong to call it a connection since the UDP protocol strength is the connec-

tionless approach, but since in this case we communicate to the server when we are connecting

and when we are disconnecting, we use this term to refer to our hybrid connection protocol.

The core of the data connection is actually pretty simple: once the touch events are recorded

by the application, they are given an incremental id in order to distinguish them, they are

translated in the data format that the server expects, and finally they are sent directly to the

server, that deals with the raw data.

Some addition to the protocol described in Section 4.3.1 have been introduced with this

application, in order to deal with the increased complexity. The UDP message contains an

input device field and an additional data field, so that the server can recognize that the touch

data is coming from the remote device. Some examples of additional data can be the offset of

the device window with respect to the whole display, the screen in which the device is currently

located, or even some informations about the user.

5.3.2 Display Connection

As we explained in Section 5.2, we use a focus window paradigm in the remote application.

First of all we have a WebView inside our application, that connects as an overview client to

the server. But the overview client is scaled to fit the WebView, and that is not the behavior we

want. So, using some javascript injection in the WebView, we change the scale of the overview

canvas to 1, resulting in a one to one representation of the whole server display.

Once the canvas is scaled back to normal, what we can see on the tablet is just the top-left

corner of the display, but at its natural scale. Now the problem is how to let the user navigate

51

inside the whole display with the focus window. The solution we developed consists in a pair of

slider, one arranged vertically and one horizontally, that represent the WebView position inside

the bigger canvas.

When one of the sliders is moved, the application injects some Javascript code inside the

WebView, translating the whole canvas div in order to bring the right portion of the display

inside the top-left corner of the page. The application also sends a special UDP message to the

server, communicating the new position of the focus windows, so that the box representing the

connection can be moved on the display.

5.3.3 Additional Features

Thanks to the additional fields in the UDP message we can send virtually any kind of

information to the server, so we decided to use these fields in order to create a better application.

The first problem we noticed was that, if the user wanted to change the color or size of the

stroke, he had to navigate all the way to the palette using the sliders. Since in a very large

display this task takes a considerable amount of time, without even considering the trip back,

we decided to insert a palette bar in the remote application to make the user life easier.

Using the palette bar the user can access all the functions available on the palette described

in Section 4.2.5. When the user touches one of the palette bar buttons a message is sent to the

server, using the additional fields to specify what action should be taken and possibly additional

informations such as the color of the new stroke.

Thanks to this approach we can reach a user customization: different users could draw

with different colors at the same time, as long as they are using different inputs. This is

52

possible because the messages sent by the remote application can contain a user, or device,

identifier, providing what was not possible in the original SAGEBoard application: a form of

user recognition.

CHAPTER 6

USER STUDY

In this chapter we will discuss a small scale user study that was conducted using our appli-

cation.

6.1 Goal

The goal of this user study is to understand how the collaborative behaviors change between

using an electronic whiteboard such as our application and a more common single mouse input.

6.2 Hypotheses

A whiteboard application could help users in creating an optimal path on a city map through

its annotative functions. The user could circle the interesting points and visually try to create

a feasible solution in order to visit the interesting points.

We hypothesize the user will spend more time discussing possible solutions and be more

satisfied with the outcome than when performing the same task with a simple mouse.

6.3 Procedure

The user study consists in six variations of the same task, and it is performed by two users.

The core of the task is to create an optimal path connecting interesting points in city map

under a time constraint. The users are given a list of interesting points, along with a value

describing how much they are interested into that point. After receiving the list they are told

that they need to create a path, starting from a given start point, connecting as many interesting

53

54

points as they can, the value of the path will be given by the sum of the interest value given

by each attraction visited. Each interesting point has a visit duration time, describing how

much time is spent visiting it. The path can only connect points that are connected in the map

visualized on the screen and shown in Figure 11. Every transfer from an attraction to another,

following one of the lines, takes 15 minutes. The users are asked to create the optimal path

with a duration lesser or equal to 8 hours, representing a day from 9AM to 5PM. The path also

needs to pass through at least one restaurant, three special points on the map, representing

a lunch break during the visit. The restaurant also have different visit time, increasing the

problem complexity.

The map not only encodes the connections between the attractions but also the interest

points for each attraction, as shown in Figure 11. The shape of the markers encodes the user

who has an interest in that attraction: the circle represents User 1, while the star represents

User 2. The color of the marker encodes the interest in a particular attraction: red means a

low interest, an interest value of 1, yellow means a medium interest, an interest value of 2, and

finally green means a high interest value, with a value of 4. The black circle in the center of the

map represents the starting point of the path, while the blue markers are the three restaurants.

The task is performed first by both the users singularly, one time using a mouse as input

for the whiteboard (drawing with the mouse) and one time using SAGEBoard and its touch

based input. The two configuration use maps with different interest values, in order to give the

user a new and at the same time comparable problem. The order of the two configurations is

randomized, so that the learning time of the interface does not pose a problem during the data

55

analysis. These first two tasks get the users used to the two configurations, preparing them for

the last round of tasks.

The task is then performed two times in collaboration between the two users, using the

two input configurations with two different maps. In these last tasks the users are asked to

create a path representing a good compromise between their different interests, like a couple

would do in real life. The task also has a competitive side, but the users are asked to create a

good balance between their interest, so the optimal path should score the maximum value of

combined interest points while keeping them balanced between the two of them.

6.4 Problem

The problem itself is not at all trivial, what we are asking to the users is actually to search

for an optimal path in an undirected graph given some weights on the nodes. We are leveraging

the fact that the problem is common enough in real life to make it easier.

In the singular execution of the tasks the problem is straightforward, the user just needs to

find a path that connects the most interesting points.

In the collaborative execution, instead, the problem gains complexity because the optimal

path for one of the two users could be a very scarce path for the other. The best balanced path

must be found through the use of diplomacy, and the purpose of our user study is to understand

how behaviors change with different inputs. Will the user that keeps the mouse for most of the

time be the one with the better score? Will the user that has drawn the least the one with the

worst score?

These and many other questions will hopefully be answered in the next sections.

56

Figure 11: One of the maps used in the user Study.

57

6.5 Mouse Drawing

In order to make the results between the whiteboard approach and the mouse approach

comparable we had to implement a new functionality in SAGEBoard: mouse drawing.

If we had observed the user using a laptop in the mouse configuration, we would have

invalidated the results, because the differences might have been related to the screen size and

not to the input type.

So we decided to let the user draw on the whiteboard using a mouse pointer, in this way the

two different input configurations have the exact same interface, and all the differences must

be related to something else.

The user can draw a line simply by clicking the left-hand button and dragging the mouse

through the desired path. The user can also interact with the palette in the same way he can

with the touch inputs. Finally, the user can erase what he already wrote just by clicking the

right-hand button and use the mouse as an eraser.

The implementation of this feature is fairly simple and does not deserve a dedicated section,

we simply emulate a touch event when we receive a pointer event. The only tricky part was the

eraser, but we solved it just by emulating a touch slightly bigger than the whiteboard mode

eraser threshold when the user clicks the right-hand button of the mouse.

6.6 Setup

In this section we will describe the environment in which the users were observed, in order

to give a correct frame to the experiment.

58

We performed the experiment in the CyberCommon classroom at the University of Illinois at

Chicago. SAGEBoard was running on a large tiled vertical display composed by 18 LED screens

spanning a total size of 6 meters in width and 1.8 meters in height, with a total resolution of

8200px by 2300px. The screen has an infrared touch overlay to detect touches, it is a prototype

version of a commercialized overlay, so its precision is not very high, but it is after all functional.

The room is just a tiny bit larger than the screen, so there is not much space for the users to

stay at the side of the screens. When the users are being observed in the mouse configuration,

they sit at a table located roughly 1 meter away from the screen and they use a high precision

bluetooth mouse.

The two maps are shown simultaneously side by side on the screen, in order to save time

parallelizing work. During the first two single user experiments the users work in parallel side

by side, one of them uses a mouse, while the other one uses the multi-touch input on a different

map. In the collaborative experiments the two users first collaborate on one of the two map

using a random input configuration, then they move to the other map using the other input.

Each task has a 15 minutes time limit, in order to keep a reasonable overall experiment duration.

The experiment was repeated 10 times in order to get a statistically significant result,

involving 20 different users.

The setup for the user study is shown in Figure 12.

6.7 Feedback

At the end of the experiment we ask the users to fill in a questionnaire aimed at assessing

the SAGEBoard usability and the best input configuration.

59

Figure 12: The room setup for the user study

The first seven questions are focused on SAGEBoard and the multi-touch input. We ask the

users if they found the whiteboard application easy to use and also if they have any suggestions

to improve it. The last three questions try to understand what is the best configuration between

mouse and multi-touch input in the user’s opinion, and why.

6.8 Results

In this section we will analyze what we learnt from this user study, and how the users felt

about it.

60

6.8.1 Premise

First of all we need to explain what we are analyzing of this user study: we will not go

into many details about the actual score of the generated paths, because what we are really

interested in is how the users collaborate using the different inputs. Moreover, the results are

not very different between the two inputs because of the high complexity of the problem. The

solution space of this problem, in fact, is immense, and in all our observations we almost never

found two equal solutions. This diversity of solutions makes the result distributions for the two

inputs very similar.

What we will be very thorough in analyzing is the collaboration pattern: did the users

collaborate as equals, or a leader emerged? Was the mouse be shared equally or was it used as

the leader’s representation of power?

6.8.2 Singular Task

As explained in Section 6.6, the two users are first asked to solve the given task on their

own, using the two possible inputs. This part of the experiment should give us an idea of how

the input influences the task resolution itself, so that we can take what we discover here into

consideration when analyzing the collaborative task.

Figure 13 shows the average results for the two users on the two different maps, where the

results related to the mouse input are shown in blue, and the ones related to the multi-touch

input in orange. As you can see Map 1 has lower average results, the mean score for the two

players is similar, and the input does not seem to play a role in the outcome. Map 2, instead,

61

Figure 13: Overview of the singular task average results in the user study.

has higher average results, User 2 has a better mean score, and the multi-touch input seems to

increase the scores sensibly.

Our interpretation of these results, considering also the scores distribution, is that Map 1

is slightly more difficult in terms of score, but there is a collection of similar paths for both the

users that is easy to find and gives good results. Map 2, instead, allows higher scores, but there

are many good paths that can be taken, and this increased solution space leads to an higher

task complexity. The input does not seem to play a major role in the score, small differences

in the mean results are probably simple statistical fluctuations. Our assumptions are backed

up also by Figure 14, that shows the number of users that reached the time limit when solving

the singular task. The graph shows that users found Map 2 more challenging and needed more

time to find a satisfactory path, regardless of the input used.

62

Figure 14: Number of users reaching the time limit in the singular task.

Keeping these findings in mind we will be able to objectively analyze the collaborative

results.

6.8.3 Collaborative Task

Now that we know the two inputs do not influence the task resolution, we can assume that

every difference we find in the collaborative task will be associated with how different inputs

change the collaborative behavior.

Let’s start by analyzing the average scores for the different maps and input configurations:

the graph is shown in Figure 15. The first thing we notice is that the scores are now more

equally distributed between the two maps, and again in Map 1 the input does not really seem

to make a difference. Map 2, instead, shows an interesting pattern: the average score achieved

using the multi-touch input is consistently higher than the one scored with the mouse input.

63

Figure 15: Average Scores in the Collaborative Task.

This might be somehow correlated with the collaboration behaviors, but we cannot really say

it for sure because the same pattern is not shown in Map 1.

However, analyzing the data in a deeper way, we can discover more interesting and consis-

tent patterns. Figure 16 shows the mean difference in the two users singular score during the

collaborative task, and we can see that the multi-touch input really lowers this difference. The

users were asked to create a common path, but to still keep in mind that they had their own

personal tastes, adding some competition to the task. Our interpretation of this difference is

that when creating the common path stronger personalities emerge and drive the path towards

a better score for themselves. This happens more often with the mouse input because the two

users do not perceive themselves as peers, since they usually play different roles.

64

Figure 16: Average Score Differences in the Collaborative Task.

As a matter of fact, when using the mouse configuration, the users do not share the mouse

equally, instead one of them is usually assigned to using the mouse, while the other one checks

the feasibility of the path, or sometimes stays in the proximity of the screen, pointing the

path to follow. These two situations are shown in Figure 17, where the left image represents a

pointer and draftsman situation, while the other one shows a draftsman and analyst situation.

Interestingly enough, the role played does not seem to be related with the leadership of the

situation: sometimes the leader is the one drawing the path, while on other occasions the leader

was the pointer or the analyst. Another interesting finding is that when a leader emerges, it

is rarely on purpose: it seems like strong personalities subconsciously create a better path for

65

Figure 17: Two possible situations observed when using the mouse input.

themselves. During one of the observations, one user thought of a first draft path and went

ahead drawing it, after a while he realized on his own that the path was completely in his favor,

and stated: “Wow! That’s remarkable! I did not hit a single one of them that does not have a

circle. That can’t possibly be the best common path.”

Not all the experiments showed a leader clearly emerging, sometimes the users really collab-

orated as peers, but even in these occasions the mouse configuration showed a great disparity

in terms of whiteboard usage. When collaborating using the multi-touch input, the users draw

a roughly equal amount of path in almost every observation, while when in the mouse configu-

ration, the mouse is used mostly by one of the two users, and it is rarely shared at all. Figure 18

shows the ratio between primary and secondary user usage time of the whiteboard application

in the two configurations, where the primary user is the one that interacted the most during the

experiment. The graph clearly shows how there is an almost even distribution of interaction

66

Figure 18: Whiteboard sharing in the two configurations.

time when using the multi-touch input, while the scenario changes completely when dealing

with a single mouse input.

So, even in observations where a leader could not be clearly appointed, one of the two users

had to step up and be the one in charge of the mouse. Oddly, in these occasions, the user

appointed to be the draftsman did not take advantage of the situation, on the contrary most of

the times when faced with a decision between two paths, he would willingly lose points. This

is probably caused by the fact that, being the one actually drawing the path, the user feels like

he has the last word in the decision, and choosing the path that is best for him would make

him feel like he is taking advantage of the situation.

67

6.8.4 Annotations in the User Study

Before the start of each session, we told to the users that, since the problem at hand was

fairly complex, they could annotate whatever they wanted both on the whiteboard or on the

sheet of paper we gave them. We provided them both pens to write on paper and styluses

for a more comfortable screen writing interaction. We also reminded them that annotation on

the screen were possible even in the mouse configuration, since the mouse perfectly emulates a

touch in the application.

What we noticed is that the majority of the users did not even try to annotate on the screen

in the mouse input configuration. One could say that it is harder to write using a mouse, and

that is definitely true, but people did not even try, so they could not know. In the multi-

touch input sessions, instead, users wrote almost exclusively on the screen, sometimes with

styluses and sometimes with fingers, disregarding completely the paper solution. The amount

of annotations written by each single user in the two different configuration was always roughly

the same, so we cannot say that one of the two solutions induces the user to write more or less.

What we can say is that when using a mouse input, people would not even consider writing

with it on the screen, while it felt natural to them to annotate on it when using the touch input.

Another interesting finding here is that people are not necessarily attracted by the stylus

when they want to write, some users did, but many others naturally used their fingers to

annotate, highlighting how our solution can provide even more immediateness than a plain

whiteboard.

68

6.8.5 Questionnaire Results

Let’s start by talking about the first two questions:

• Please rate the ease of use of freehand drawing with the whiteboard application on a

scale of 1 to 10, with 1 being difficult and 10 being easy.

• Please rate the ease of use of writing with the whiteboard application on a scale of 1 to

10, with 1 being difficult and 10 being easy.

These two questions asked the user for a usability evaluation of two different use cases in

SAGEBoard, only when dealing with the multi-touch input. At first glance, the results of these

questions were very discordant, as you can see in Figure 19, and we could not figure out how

two users could have such different feelings of the same experience. However, after rewatching

the video materials, we noticed that the users that gave lower scores were using their fingers to

interact with the whiteboard, while the higher grades were given by people that used one of the

available styluses. The styluses are not processed in any different way with respect to fingers,

the reason for this difference is probably related with the hand position that the user keeps in

the two different situations. When the user is drawing with his fingers, sometimes other fingers

or the hand are detected as well, because the touch overlay we used in this setup is not very

precise , and it detects touches even when objects are near the screen without touching it. For

this reason, when drawing with fingers, the quality decreases, due to undesired lines drawn near

the user finger position. When using a stylus, instead, the user keeps it like a common pen and

no other touches are detected near the stylus tip, resulting in a much better drawing quality.

So we separated the grades given by the users, differentiating the ones given by people that

69

Figure 19: Results for Questionnaire Questions 1 and 2

used stylus from the others, and the result is shown in Figure 20. As you can see the grades

coming from people that used a stylus, shown in blue, are much higher than the others.

Question 3 was about the palette interface, but since the palette was not strictly needed

to solve the assigned task, many user did not use it. So, only a minor fraction of the users

observed was able to answer the question, and consequently we do not have enough answers to

analyze the question from a statistically accurate point of view. Anyway the few evaluation we

had were very positive, with an usability mean grade of 8.5.

Questions 4 through 7 were more open to suggestions for SAGEBoard:

• Please describe any difficulties you faced while using the Whiteboard application.

70

Figure 20: Results for Questionnaire Questions 1 and 2, differentiating users that used a stylus.

• How could the Whiteboard application be improved? Are there any features that you felt

are missing?

• Do you think this application could substitute a real whiteboard? (Yes/No)

• Any further comments about the Whiteboard application used during this study

We got plenty of feedback from these questions. Many users found writing on SAGEBoard

difficult because undesired lines were drawn even when they were not actually touching the

screen, but this is a known hardware problem of the overlay we used in the experiment and we

cannot do much about it. We tried SAGEBoard on more precise hardware and the problem

is not present there. Also, the iPad extension we already described in Section 5 addresses this

problem in an indirect way.

71

Some users commented that erasing should be more precise, this is again a known problem:

the way we structured the drawing data described in Section 4.3.2 forces us to erase line sections

instead of single pixels, because we store the lines with a low precision in order to reduce

latency. Anyway we will try to better tune the stored lines precision in order to enhance the

user experience.

The answers to question 6, asking if SAGEBoard could substitute a real whiteboard in the

user’s opinion, were encouraging: a surprisingly high percentage of testers answered positively.

This is even better news when we consider that the hardware used in the experiment was not the

best available, the users were probably attracted by the many functionalities of the application.

Most of the users that used a stylus during the experiment commented how the drawing

experience was way better when using it. This is probably because people are not used to

finger-based interaction in real life whiteboard, so the stylus turns out to be more comfortable

to use. For this reason in the future we will probably encourage the users to use some sort of

stylus to interact with SAGEBoard.

Finally, questions 8 and 9 were related to the task actually performed during the user study,

with question 8 composed by two subquestions:

• How satisfied are you with the resulting path?

– When using a simple mouse input?

– When using the multi-touch input?

• Which type of input did you like more?

72

As shown in Figure 21 the results were clearly in favor of the multi-touch input, even though

the mouse scored pretty high too.

Question 9, being more open to comments, helped us figure out why the users preferred the

multi-touch input, also it is important to point out that, while question 8 was asking about the

task results, question 9 asked the user about a preference between the two inputs, regardless of

the results . Almost all the observed users answered multi-touch input to this question, apart

from one user that was not satisfied with the multi-touch writing precision, and mentioned in

his answer that he liked the mouse input more but “not by much”, and that it was “mainly

for better note taking abilities”. The comments praising multi-touch input were various, and

the most common sounded like “because we could collaborate ”, “the mouse felt restricting”,

or “because it is easier to share the items in the environment”.

6.9 Discussion

The user study results seem to state quite clearly that the multi-touch input, even if it does

not necessarily lead to better scores in this particular task, allows the user to collaborate way

more than the mouse input. This conclusion is confirmed both by the results observation and

by the users answers to the questionnaire, showing that not only the multi-touch configuration

is better for collaboration, but also that the users themselves can understand it. The problem

with the mouse configuration is mainly that the mouse can only be used by one user at a time,

and this makes the users feel like they are not peers in the interaction. It must be said that

all the people in the user study were right-handed, so even when they were sitting side by side,

when one of the two users wanted to use the mouse he had to bring it away from the other’s

73

Figure 21: Results for Questionnaire Question 8

reach. We do not think that having a different mixture of right-handed and left-handed users

would have changed something, because the mouse can only be used by one person at a time

anyway, regardless of its position.

Most of the bad comments about the application in its multi-touch configuration were related

to the precision, but we know we had a faulty hardware, and trying the application on more

reliable systems showed us that those precision problems were only related to the hardware.

We are sure that these hardware problems will be solved by advancements in technology, so we

are not planning to modify the application in order to better deal with imprecise devices.

74

So, after all, we can say that the user study was a success, it showed us the power of

SAGEBoard and, more in general, of whiteboard applications for large displays.

CHAPTER 7

CONCLUSION

We introduced in this work SAGEBoard, a networked application that enables large scale

multi-touch displays to be used as enhanced electronic whiteboards. Our solution enables

multiple users to collaboratively work together, and offers extended functionalities, such as

freehand drawing, annotations on documents, selection, movement, scaling of text, and the

possibility to save a session or load a previously saved one. One of this application strengths

lies in its freedom of implementation: being integrated in a middleware such as SAGE2 allows

it to scale to displays of every size.

We analyzed the state of the art in both the large displays and electronic whiteboard

applications fields and we proposed an overview of the problems commonly encountered, trying

to propose solutions to them, in order to improve our application. Then we looked at similar

applications to the one we developed and we outlined what are the features that make our

application stand out, such as mixing different kind of collaboration paradigms and seamless

scaling to every possible resolution.

We then described how the application was designed and implemented, motivating all our

design choices and describing in detail architecture and features of SAGEBoard. We looked at

the application from a software engineering point of view, arguing that its design was suitable

for many effortless extensions. We confirmed our statements by describing an extension of

SAGEBoard: a tablet application that allows users to remotely interact with the system. The

75

76

remote control extensions also added a new level of collaboration to the application, making it

deployable even on not touch enabled large displays.

Finally, we tested the power of our application through a small scale user study. The

experiment showed us that multi-touch controlled applications, with respect to the common

mouse restricted ones, create a much more collaborative environment among multiple users.

The single mouse revealed to be deleterious for collaboration, since it can be seen as a symbol

of leadership. The user study also tested SAGEBoard usability, showing that the users were

very impressed by its ease of use, and that the majority of them think that SAGEBoard could

substitute a real whiteboard.

CITED LITERATURE

1. Tan, D. S., Robertson, G. G., and Czerwinski, M.: Exploring 3d navigation: combining
speed-coupled flying with orbiting. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 418–425. ACM, 2001.

2. Tan, D. S., Czerwinski, M. P., and Robertson, G. G.: Large displays enhance optical flow
cues and narrow the gender gap in 3-d virtual navigation. Human Factors: The
Journal of the Human Factors and Ergonomics Society, 48(2):318–333, 2006.

3. Andrews, C., Endert, A., and North, C.: Space to think: large high-resolution displays
for sensemaking. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 55–64. ACM, 2010.

4. Baudisch, P., Good, N., Bellotti, V., and Schraedley, P.: Keeping things in context:
a comparative evaluation of focus plus context screens, overviews, and zoom-
ing. In Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 259–266. ACM, 2002.

5. Czerwinski, M., Robertson, G., Meyers, B., Smith, G., Robbins, D., and Tan, D.:
Large display research overview. In CHI’06 extended abstracts on Human factors
in computing systems, pages 69–74. ACM, 2006.

6. Moreland, K.: Redirecting research in large-format displays for visualization. In Large
Data Analysis and Visualization (LDAV), 2012 IEEE Symposium on, pages 91–95.
IEEE, 2012.

7. Ni, T., Schmidt, G. S., Staadt, O. G., Livingston, M. A., Ball, R., and May, R.: A survey of
large high-resolution display technologies, techniques, and applications. In Virtual
Reality Conference, 2006, pages 223–236. IEEE, 2006.

8. Febretti, A., Nishimoto, A., Thigpen, T., Talandis, J., Long, L., Pirtle, J., Peterka, T.,
Verlo, A., Brown, M., Plepys, D., et al.: Cave2: a hybrid reality environment for
immersive simulation and information analysis. In IS&T/SPIE Electronic Imaging,
pages 864903–864903. International Society for Optics and Photonics, 2013.

77

78

CITED LITERATURE (continued)

9. Jakobsen, M. and Hornbæk, K.: Proximity and physical navigation in collaborative work
with a multi-touch wall-display. In CHI’12 Extended Abstracts on Human Factors
in Computing Systems, pages 2519–2524. ACM, 2012.

10. Jakobsen, M. R. and Hornbæk, K.: Up close and personal: Collaborative work on a
high-resolution multitouch wall display. ACM Transactions on Computer-Human
Interaction (TOCHI), 21(2):11, 2014.

11. Kruger, R., Carpendale, S., Scott, S. D., and Greenberg, S.: Roles of orientation in table-
top collaboration: Comprehension, coordination and communication. Computer
Supported Cooperative Work (CSCW), 13(5-6):501–537, 2004.

12. Scott, S. D., Carpendale, M. S. T., and Inkpen, K. M.: Territoriality in collaborative
tabletop workspaces. In Proceedings of the 2004 ACM conference on Computer
supported cooperative work, pages 294–303. ACM, 2004.

13. Elrod, S., Bruce, R., Gold, R., Goldberg, D., Halasz, F., Janssen, W., Lee, D., McCall,
K., Pedersen, E., Pier, K., et al.: Liveboard: a large interactive display support-
ing group meetings, presentations, and remote collaboration. In Proceedings of
the SIGCHI conference on Human factors in computing systems, pages 599–607.

ACM, 1992.

14. Pedersen, E. R., McCall, K., Moran, T. P., and Halasz, F. G.: Tivoli: An electronic white-
board for informal workgroup meetings. In Proceedings of the INTERACT’93 and
CHI’93 conference on Human factors in computing systems, pages 391–398. ACM,
1993.

15. Agostini, A. and Di Biase, E.: Large multitouch screens to enhance collaboration in the
classroom of the 21st century: an italian experiment. IxD&A, 15:40–56, 2012.

16. Ashdown, M. and Robinson, P.: The writings on the wall: Large, remotely controlled dis-
plays. In Proceedings of the First European Conference on Computer-Supported
Collaborative Learning (Euro-CSCL 2001), pages 83–88, 2001.

17. France, D. J., Levin, S., Hemphill, R., Chen, K., Rickard, D., Makowski, R., Jones, I.,
and Aronsky, D.: Emergency physicians behaviors and workload in the presence of
an electronic whiteboard. International journal of medical informatics, 74(10):827–
837, 2005.

79

CITED LITERATURE (continued)

18. Google docs support. https://support.google.com/docs/topic/21008?hl=en&ref_

topic=2811805.

19. Microsoft office sharing support. https://support.office.com/en-us/article/

Simultaneously-edit-a-document-with-other-authors-2a6059e7-9fe9-4e66-8ecd-f3d5372c27f4.

20. Smart iq official page. http://education.smarttech.com/en/products/smart-kapp-iq.

21. Marrinan, T., Aurisano, J., Nishimoto, A., Bharadwaj, K., Mateevitsi, V., Re-
nambot, L., Long, L., Johnson, A., and Leigh, J.: Sage2: A new ap-
proach for data intensive collaboration using scalable resolution shared dis-
plays. In Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom), 2014 International Conference on, pages 177–186. IEEE, 2014.

22. Swift socket library official page. https://github.com/swiftsocket/SwiftSocket.

VITA

NAME Filippo Pellolio

EDUCATION

Bachelor’s Degree in Computer Engineering

Jul 2014, Politecnico di Milano, Italy

LANGUAGE SKILLS

Italian Native speaker

English Full working proficiency

2015 - TOEFL examination (107/120)

SCHOLARSHIPS

Spring 2016 Research Assistantship (RA) position (20 hours/week) with full tuition
waiver plus monthly stipend

Spring 2015 Teaching Assistantship (TA) position (32 hours/term)

80

