
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2022 IEEE

Moving from Composable to Programmable
Zhongyi Chen

Electronic Visualization
Lab, Computer Science
Univ Illinois Chicago
Chicago, Illinois, USA

zchen230@uic.edu

Luc Renambot
Electronic Visualization
Lab, Computer Science
Univ Illinois Chicago
Chicago, Illinois, USA

renambot@uic.edu

Lance Long
Electronic Visualization
Lab, Computer Science
Univ Illinois Chicago
Chicago, Illinois, USA

llong4@uic.edu

Maxine Brown
Electronic Visualization
Lab, Computer Science
Univ Illinois Chicago
Chicago, Illinois, USA

maxine@uic.edu

Andrew E. Johnson
Electronic Visualization
Lab, Computer Science
Univ Illinois Chicago
Chicago, Illinois, USA

ajohnson@uic.edu

Abstract—In today’s Big Data era, data scientists require modern
workflows to quickly analyze large-scale datasets using complex
codes to maintain the rate of scientific progress. These scientists
often rely on available campus resources or off-the-shelf
computational systems for their applications. Unified
infrastructure or over-provisioned servers can quickly become
bottlenecks for specific tasks, wasting time and resources.
Composable infrastructure helps solve these problems by providing
users with new ways to increase resource utilization. Composable
infrastructure disaggregates a computer’s components – CPU,
GPU (accelerators), storage and networking – into fluid pools of
resources, but typically relies upon infrastructure engineers to
architect individual machines. Infrastructure is either managed
with specialized command-line utilities, user interfaces or
specification files. These management models are cumbersome
and difficult to incorporate into data-science workflows. We
developed a high-level software API, Composastructure, which,
when integrated into modern workflows, can be used by
infrastructure engineers as well as data scientists to reorganize
composable resources on demand. Composastructure enables
infrastructures to be programmable, secure, persistent and
reproducible. Our API composes machines, frees resources,
supports multi-rack operations, and includes a Python module for
Jupyter Notebooks.

Keywords—distributed systems, testbed implementation and
deployment, composable infrastructure, deep learning, visualization,
infrastructure as code

I. INTRODUCTION
We were first introduced to the company Liqid and the

concept of ‘composable infrastructure’ at the IEEE/ACM
Supercomputing (SC) 2017 conference. After several
discussions, we purchased a small Liqid development system
(devkit) in March 2018 as a proof of concept. Confident with
this approach and the need to support the growing demand for
GPUs from faculty in our College of Engineering, we received
an NSF grant in November 2019 to purchase a large, two-rack
system we named COMPaaS DLV, COMposable Platform as a
Service Instrument for Deep Learning & Visualization [7, 8].
We began providing access to faculty in February 2020 and now,
two years later, it is used by 40 research faculty and students in
four College of Engineering departments and some external
collaborators. The research applications are primarily GPU-
centric for compute, with significant variability in storage and
networking around the various applications’ data requirements.

Composable infrastructure disaggregates a computer’s
components – CPU, GPU (accelerators), storage and networking
– into fluid pools of resources, but typically relies upon
infrastructure engineers to architect individual machines.

Infrastructure is either managed with specialized command-line
utilities, user interfaces or specification files.

Liqid provides an internal web-based interface and REST
API to control and operate its hardware. Their interface enables
the composition of bare-metal machines by managing pools of
resources and monitoring the hardware. While this approach
maintains system security and stability, it is cumbersome, time
consuming and difficult to incorporate in workflows for data
scientists and experimental computer science researchers who
lack knowledge of the underlying hardware.

Also, each of COMPaaS’s two racks/systems operates
independently within its own fabric, making it cumbersome for
infrastructure engineers to compose hardware based on users’
requests. Early on, one of our major design goals was to support
necessary functions across all composable fabrics with a single
software environment.

Modern workflows require more diverse access models that
are programmable. Today’s major cyberinfrastructure (CI)
projects are realizing the benefit and expressive power of
Infrastructure as Code, where a user (an infrastructure engineer,
CI researcher or data scientist) describes the required hardware
and configuration, not through a portal and a series of panels
(web-based gateways), but through code and APIs running
inside a programming notebook (primarily in Python inside
Jupyter).

Projects such as Chameleon [1, 2] and FABRIC [3] address
similar functionalities at different levels. Chameleon provides
bare-metal nodes that can be provisioned and configured
through Python to build reproducible experiments. Similarly,
FABRIC lets a user build virtual machines with specific
requirements (in terms of SSD, NIC and GPU) that are passed
from the host machine to a virtual machine.

 We developed a high-level software API that we named
Composastructure that has the following capabilities:

• Programmable, secure, persistent and reproducible
infrastructure for use by both infrastructure engineers
and data scientists

• Simple API to compose machines and free resources,
independent of various vendors’ APIs

• High-level functionalities

• Support for multi-rack operations

• Python module for programmable notebooks that
supports the above-mentioned capabilities

COMPaaS DLV is funded by NSF award #1828265 to the University of
Illinois Chicago.

II. COMPOSASTRUCTURE
Composastructure is a REST API that is higher level and

easier to use than Liqid’s web-based API. Composastructure
abstracts the low-level logic required to manipulate composable
resources and provides programmability and reproducibility
while maintaining security and persistence. We focused on
abstracting Liqid APIs, but one could also abstract and integrate
the APIs of other vendors (such as GigaIO, HPE, Fungible, etc.)
in the same way, hiding their API specifics and complexities.

Composastructure provides data scientists and infrastructure
engineers with the following capabilities:

• List of currently composed machines and their attached
resources

• List of available resources in the general pool

• List of available PCI-express (PCIe) fabrics

• Ability to compose, modify, and delete machines

• Ability to monitor the state of the fabrics and save/restore
an entire fabric at once (for use by infrastructure
engineers)

To build the Composastructure API, we first analyzed how
the Liqid API handled machines and resource management.
When we started this project, their API and the endpoints that
were required were not fully documented. The existing graphical
user interface (GUI) leveraged many of the API features, so our
required abstraction was possible. We had to reverse engineer
the GUI to understand their protocol to compose a machine.
There was documentation for many of the API endpoints, but
they lacked instructions on how to use the endpoints together.
Chrome developer tools enabled us to observe when and what
API endpoints were called while performing tasks with the GUI.
With trial and error, we prototyped the composition and
decomposition (freeing resources) of machines.

Liqid’s API did not provide functionality to monitor the state
of the infrastructure (machine creation, deletion, device update,
etc.). Using reverse engineering, we determined that the GUI
listened for server-side events (Stomp.js). We integrated these
events into our API and determined that it was a safe strategy
that did not interfere with using the vendor’s API and GUI.

We first prototyped an API for infrastructure engineers to
automatically create/delete a machine on COMPaaS. Since
development was done in Node.js, useful libraries, like
Express.js, made it easy to design an API and web application.
Over time, we developed additional functionality based on
observed needs.

Given the variety and complexity of each of our use cases,
restoring the state of COMPaaS’s infrastructure after a system
failure or upgrade became burdensome to infrastructure
engineers using Liqid’s point-and-click user interface. We
added functionality to monitor, save and restore the state of the
infrastructure, reducing restoration of a saved state from hours
to minutes. Additional features included modifying the state of
composed resources on machines and implementing a public,
secure login portal, which enabled our infrastructure engineer to
do remote administration of the composable equipment racks

without using intermediary login portals for access. With these
features developed, we built a custom user interface to test the
endpoints of our API and to provide quicker access to common
tasks (building a machine, adding a component to a machine,
freeing resources, and switching between our three composable
fabrics that consist of our two full racks and the small devkit
system). With low-level tasks implemented and tested, we then
focused on making these functions accessible to data scientists.

Today, data science is predominantly conducted using
programmable notebooks (primarily Jupyter) [4] to combine
code, documentation, and visualization in a single resource.
Cyberinfrastructure (CI) is becoming programmable (Software
Defined Infrastructure), enabling data scientists and
infrastructure engineers to configure CI to be reproducible and
shareable. Some of COMPaaS’s early adopters already used
Kubernetes to deploy and orchestrate their applications. One
idea we had was to parse their configuration files for resource
specifications and build appropriate machines matching their
requirements. However, more of our faculty and students were
familiar with Jupyter Notebooks, so we decided to expose our
API as a Python module that could be loaded into a notebook.
This gives data scientists better control over their resources and
enables them to conduct their experiments in a controlled and
reproducible fashion. Configurations, saved as code inside
notebooks, can be shared with collaborators and students, and
disseminated within their research communities.

Our progress enabled composable infrastructure to be
introduced to College of Engineering faculty through
programmable APIs and services, exposed in computational
notebooks, for interactive, reproducible and monitored
experiments. We recently purchased an additional composable
fabric to provide a JupyterHub frontend to support both our
infrastructure engineers and our data scientists (JupyterHub
launches Jupyter instances for each user of the system). The new
fabric is overprovisioned (empty slots) to support future users
and growing requirements. We believe that it was important to
combine science workflows, which researchers use, with
emerging technology to ensure early adoption.

Composastructure was prototyped and tested on our three
composable systems. It is mostly written in Typescript and is
open source. We are making it available for research purposes
in a GitHub repository but without guarantees or support [5].

III. COMPOSASTRUCTURE API
Composastructure is comprised of a set of web routes
(functions) and a server that hosts and runs those functions. We
describe both aspects in the sections below.

A. API Description
This section shows elements of the Composastructure API

that a programmer can use to operate the low-level fabric and
compose machines out of available components (GPUs, SSDs,
NICs and compute nodes). The code contains groups of web
HTTP requests (i.e., routes), grouped into ‘collections,’
‘lookup,’ ‘details’ and ‘control’ routes. Parameters to those
routes are shown between ‘{}’ (such as id or fabric_id). The
requests are processed on a web server and return specific data
types specified after the route’s name. All data-type definitions

are available in the public source code repository. The server
code is described in the next section.

• Collections: Return the state of a particular group of
elements in the system, such as groups, machines, available
devices and fabrics (PCIe network). Groups are collections
of machines defined by infrastructure engineers for
administrative purposes.
GET /api/groups: Group
GET /api/machines: Machine
GET /api/devices: Device
GET /api/fabrics: Overview

• Lookup: Given an element ID (within a specific fabric), it
returns the elements within the requested components, such
as a group, a machine, or a device.
GET /api/group/{fabr_id}/{id}: Group
GET /api/machine/{fabr_id}/{id}: Machine
GET /api/device/{fabr_id}/{id}: Device

• Details: Given an element ID, it returns detailed information
about that element; e.g., CPU or RAM information for a
machine, core count and speed for a GPU, or capacity for a
SSD.
GET /api/details/group/{fabr_id}/{id}:
GroupDetails

GET /api/details/machine/{fabr_id}/{id}:
MachineDetails

GET /api/details/device/{fabr_id}/{id}:
DeviceDetails

• Control: Control-group routes include the operation that a
user can perform on a composable system, mainly
composing a machine out of available components and
deleting such a machine.
POST /api/group GroupCreateOptions: GroupInfo

POST /api/machine ComposeOptions: MachineInfo

DELETE /api/group/{fabr_id}/{id}: GroupInfo

DELETE /api/machine/{fabr_id}/{id}: MachineInfo

B. Composastructure Server
We provide a web server that hosts and execute the routes,

translating the requests into low-level commands to the
appropriate fabric. You can host this server, which composes
resources on multiple composable fabrics, on any machine with
network access to those fabrics. The server handles the HTTP
requests on the routes defined above and returns results and error
information when needed.

The server is designed around two abstractions: an
‘Observer’ class that monitors the state of fabric and gets
notifications of all updates and changes happening internally,
and a ‘Controller’ class that provides commands to operate on
the infrastructure, such as composing a machine or releasing
devices. We also added high-level functionalities, such as
clearing a whole rack at once, saving a rack configuration into a
JSON file, and restoring a rack from any previously saved state
(useful after outages or system upgrades). All events and

activities happening inside the system can also be recorded over
time for analysis and auditing (all compose and decompose
events, components used, etc.).

var config: RestServerConfig = {
 systems: [{
 ip: '10.0.100.125',
 name: 'DevKit'
 }],
 hostPort: 3000,
 enableGUI: true,
 sslCert: {
 privateKey: "XXX…",
 certificate: "YYY…",
 ca: "ZZZ…"
 },
 adminLogin: {
 username: 'admin',
 password: 'compose'
 }
}

var Server = new RestServer(config);

Server.start().then(() => {
 console.log('Server started');
});

You can set up an administrator account, secure the
communication with SSL certificates (using HTTPS protocol),
and run the service on a specific port. We also include an
experimental web user interface built on top of our API that is
easier to use and customizable for infrastructure engineers.
Above is the server configuration and execution code.

C. System Design
The architecture diagram (Figure 1) shows the overall design of
the system, where applications use our API to talk to a single
server in order to discover available components over multiple
PCIe fabrics. The applications can then request composing
machines out of these available components. Our API handles
the requests and returns results (information, success or failure)
to the applications. As composable hardware becomes more
commonly deployed from multiple vendors, Composastructure
could be expanded to support multiple low-level vendor-specific
APIs.

Fig. 1. Composastructure System Architecture

IV. DISCUSSION
We used many common and tested packages to build our

API and server, including Express.js [10] for the web
framework, Passport.js [11] for authentication, and Socket.IO
[9] for websocket communications. Passport.js enables
authentication with many login strategies (Google, OpenId,
CiLogon and many more). All services use secure
communications with SSL certificates for data encryption.
Socket.IO enables real-time bi-directional secure
communication from the server to the clients listening for
updates.

After prototyping the Composastructure API in late 2020,
our infrastructure engineers have been successfully using it and
we are now considering exposing it to a subset of our data-
science users so they, too, can experience the benefits of
composable infrastructure. It can be used to build an
infrastructure predictably and reliably for many scenarios, from
experimental testbeds to production systems. Commonly used
packages and frameworks (Kubernetes, Containers, Jupyter,
Python, REST APIs) can then be used to deploy the appropriate
workload, from bare-metal experiments to container
deployments.

For infrastructure engineers, our work exposes the minimal
overhead of composability, offering a higher utilization rate of
the hardware without overprovisioning bare metal, and lowering
the management load using a Software Defined Infrastructure.
It enables engineers to rapidly build simple configurations (i.e.,
it removes repetitive tasks) and complex configurations
precisely matching application and workflow requirements (i.e.,
complex configurations based on knowledge and experience

using the infrastructure). This knowledge can be captured either
as code in notebooks or as templates for later use. Higher-level
APIs will be exposed to facilitate common tasks, such as
decomposing a whole rack, restoring a rack to a known
configuration (previously saved), composing many similar
machines, etc. One can envision templates for Data Transfer
Nodes (DTNs, high-speed disk-to-disk dataset transfers), large
AI/ML model training, or high-throughput inference, to cite a
few examples.

To expose the potential of composable infrastructure to the
widest audience (not just infrastructure engineers and advanced
programmers), we developed a Python module for inclusion of
composability in programmable notebooks. This enables
experiments and system configurations to be done within a
persistent, shareable and reproducible format [4].

Below are a few screenshots of such work, with our
Composastructure API inside a Jupyter Notebook, showing how
to initialize the API, to list available resources, to build a
machine, and to add a device to a machine.

Figure 2 shows the configuration of a client to communicate
with the server (URL, name and password). The Python code is
then loaded into a notebook (the only software dependency is
the commonly used ‘requests’ Python module to perform REST
calls).

Fig. 2. Initialization

Figure 3 shows how to request information about the state of
the system for a given fabric (fabricId parameter). Here, three
machines have been configured. We can request a list of all the
devices in the system and see which ones are currently available.
All data queries are presented in an easy-to-read format inside
the notebook.

Fig. 3. System State

Figure 4 shows how easy it is to create a machine, given a
list of available components. Here, compute node ‘pcpu2’ is
combined with ‘gpu1’ and ‘ssd0’ to form a machine called
‘demo’. The API returns ‘success’ if components are currently
available and if the compose operation performs successfully.

Fig. 4. Composing a Machine

Figure 5 shows how to dynamically add a GPU and an SSD
to an existing machine. More operations are available, such as
releasing a component from a machine, decomposing a machine
completely and information queries, described in our API
description (Section III.A API Description).

Fig. 5. Adding a Device to an Existing Machine

Figure 6 shows how to delete components from an existing
machine.

Fig. 6. Removing a Device from an Existing Machine

Finally, Figure 7 shows how to decompose a machine and
return the hardware to the available pool of components.

Fig. 7. Decompose a Machine

V. CONCLUSIONS
We presented our work to Liqid’s product management team

and our lessons learned helped influence their future
implementations. We discussed documentation improvements,
changelog implementations, and Software Development Kit
(SDK) designs based on our experiences. These changes and
additions will make it easier for their customers to develop
software for composable infrastructure as it becomes more
widely deployed.

Ben Bolles, Executive Director, Product Management,
Liqid, said, “The University of Illinois Chicago team has been a
tremendous development partner for Liqid through our joint
collaboration on management and API integration projects,
including integrating their management tools and Kubernetes
with the Liqid composability and management APIs. … The
team has helped influence and shape the Liqid software roadmap
based on their early adoption of CDI (composable disaggregated
infrastructure) for the benefit of other university researchers
worldwide.” Our work and experiences are shared in a white
paper and press releases on the company website [12].

Another example of integration of composable infrastructure
into existing workflows is Liqid’s recent Slurm [6] integration.
It better manages deployments of bare metal and containerized
workloads and services for the composable infrastructure
community. Slurm provides cluster management and job
scheduling. This integration enables applications to request
resources using Slurm, which are then automatically
provisioned from a composable pool of available hardware.

Liqid is also working towards future integrations with
Kubernetes.

We recently deployed an early prototype of GPUoE (GPU
over Ethernet). Using a GPU expansion chassis connected to
compute nodes over Ethernet, we were able to add remote GPUs
into COMPaaS. Additional API endpoints were developed by
the vendor to manage this type of remote GPU. We quickly
extended our own work to support these functions. Hardware is
now as malleable as software and, going forward, transitioning
hardware resources between applications will become as
commonplace as moving containers between hardware. This
symbiosis of models creates an agile foundation for data
scientists to continue to fully utilize resources and continue
scientific progress.

Composastructure API can be used by modern application
workflows to compose machines, servers, or make hardware
changes based on an application’s request. Concurrent work by
industry to support Slurm and soon Kubernetes demonstrates a
general trend in this direction. The popularity of Jupyter
Notebooks and machine learning workload variability requires
these types of responsive resources and infrastructures. Our API
reduces the complexity of these emerging infrastructure designs
and helps to lower the cost of management, while contributing
techniques and best practices to the community.

ACKNOWLEDGMENT
This publication is based on work supported by NSF award

#1828265. We also wish to acknowledge Liqid, Inc., who has
been a significant industry collaborator, providing invaluable
technical support. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of our funding
agency or collaborator.

REFERENCES
[1] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione, M.

Cevik, J. Colleran, H.S. Gunawi, C. Hammock, J. Mambretti, A. Barnes,
F. Halbach, A. Rocha, J. Stubbs, “Lessons Learned from the Chameleon
Testbed,” Proceedings of the 2020 USENIX Annual Technical
Conference (USENIX ATC '20), USENIX Association, July 2020

[2] Chameleon Infrastructure: https://www.thechibox.com/
[3] I. Baldin et al., “FABRIC: A National-Scale Programmable Experimental

Network Infrastructure,” IEEE Internet Computing, Vol. 23, No. 6, pp.
38-47, 1 Nov.-Dec. 2019, https://doi.org/10.1109/MIC.2019.2958545.

[4] Jeffrey M. Perkel, “Why Jupyter is data scientists’ computational
notebook of choice,” Nature, 563, 145-146, 2018,
https://doi.org/10.1038/d41586-018-07196-1

[5] Composastructure GitHub source code repository:
https://github.com/Zhongy1/Composastructure

[6] Andy B. Yoo, Morris A. Jette, Mark Grondona, “SLURM: Simple Linux
Utility for Resource Management,” In: Feitelson, D., Rudolph, L.,
Schwiegelshohn, U. (eds) Job Scheduling Strategies for Parallel
Processing. JSSPP 2003. Lecture Notes in Computer Science, Vol 2862,
Springer, Berlin, Heidelberg, https://doi.org/10.1007/10968987_3

[7] M. Brown, L. Renambot, L. Long, T. Bargo, A. Johnson, “COMPaaS
DLV: Composable Infrastructure for Deep Learning in an Academic
Research Environment,” MERIT (Midscale Education and Research
Infrastructure and Tools) Community Event Workshop, 27th IEEE
International Conference on Network Protocols (ICNP 2019), Chicago,
Illinois, USA, October 7, 2019,
http://doi.org/10.1109/ICNP.2019.8888070

[8] Lance Long, Tim Bargo, Luc Renambot, Maxine Brown, Andrew
Johnson, “Composable Infrastructures for an Academic Research
Environment: Lessons Learned,” First Workshop on Composable
Systems (COMPSYS ‘22), co-located with the 36th IEEE International
Parallel and Distributed Processing Symposium, Lyon, France, June 3,
2022, accepted

[9] Socket.IO, Bidirectional and low-latency communication for every
platform, https://socket.io

[10] Express, Fast, unopinionated, minimalist web framework for Node.js,
https://expressjs.com

[11] Passport, Simple, unobtrusive authentication for Node.js,
https://www.passportjs.org

[12] Liqid newsroom and blog, https://www.liqid.com/blog/case-study-uic-
deploys-composable-infrastructure-for-uneven-applications-in-
scientific-research

