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Abstract—In today’s Big Data era, data scientists require modern 
workflows to quickly analyze large-scale datasets using complex 
codes to maintain the rate of scientific progress. These scientists 
often rely on available campus resources or off-the-shelf 
computational systems for their applications. Unified 
infrastructure or over-provisioned servers can quickly become 
bottlenecks for specific tasks, wasting time and resources. 
Composable infrastructure helps solve these problems by providing 
users with new ways to increase resource utilization. Composable 
infrastructure disaggregates a computer’s components – CPU, 
GPU (accelerators), storage and networking – into fluid pools of 
resources, but typically relies upon infrastructure engineers to 
architect individual machines. Infrastructure is either managed 
with specialized command-line utilities, user interfaces or 
specification files. These management models are cumbersome 
and difficult to incorporate into data-science workflows. We 
developed a high-level software API, Composastructure, which, 
when integrated into modern workflows, can be used by 
infrastructure engineers as well as data scientists to reorganize 
composable resources on demand. Composastructure enables 
infrastructures to be programmable, secure, persistent and 
reproducible. Our API composes machines, frees resources, 
supports multi-rack operations, and includes a Python module for 
Jupyter Notebooks.  

Keywords—distributed systems, testbed implementation and 
deployment, composable infrastructure, deep learning, visualization, 
infrastructure as code 

I. INTRODUCTION 
We were first introduced to the company Liqid and the 

concept of ‘composable infrastructure’ at the IEEE/ACM 
Supercomputing (SC) 2017 conference. After several 
discussions, we purchased a small Liqid development system 
(devkit) in March 2018 as a proof of concept. Confident with 
this approach and the need to support the growing demand for 
GPUs from faculty in our College of Engineering, we received 
an NSF grant in November 2019 to purchase a large, two-rack 
system we named COMPaaS DLV, COMposable Platform as a 
Service Instrument for Deep Learning & Visualization [7, 8]. 
We began providing access to faculty in February 2020 and now, 
two years later, it is used by 40 research faculty and students in 
four College of Engineering departments and some external 
collaborators. The research applications are primarily GPU-
centric for compute, with significant variability in storage and 
networking around the various applications’ data requirements.  

Composable infrastructure disaggregates a computer’s 
components – CPU, GPU (accelerators), storage and networking 
– into fluid pools of resources, but typically relies upon 
infrastructure engineers to architect individual machines. 

Infrastructure is either managed with specialized command-line 
utilities, user interfaces or specification files. 

Liqid provides an internal web-based interface and REST 
API to control and operate its hardware. Their interface enables 
the composition of bare-metal machines by managing pools of 
resources and monitoring the hardware. While this approach 
maintains system security and stability, it is cumbersome, time 
consuming and difficult to incorporate in workflows for data 
scientists and experimental computer science researchers who 
lack knowledge of the underlying hardware.  

Also, each of COMPaaS’s two racks/systems operates 
independently within its own fabric, making it cumbersome for 
infrastructure engineers to compose hardware based on users’ 
requests. Early on, one of our major design goals was to support 
necessary functions across all composable fabrics with a single 
software environment. 

Modern workflows require more diverse access models that 
are programmable. Today’s major cyberinfrastructure (CI) 
projects are realizing the benefit and expressive power of 
Infrastructure as Code, where a user (an infrastructure engineer, 
CI researcher or data scientist) describes the required hardware 
and configuration, not through a portal and a series of panels 
(web-based gateways), but through code and APIs running 
inside a programming notebook (primarily in Python inside 
Jupyter).  

Projects such as Chameleon [1, 2] and FABRIC [3] address 
similar functionalities at different levels. Chameleon provides 
bare-metal nodes that can be provisioned and configured 
through Python to build reproducible experiments. Similarly, 
FABRIC lets a user build virtual machines with specific 
requirements (in terms of SSD, NIC and GPU) that are passed 
from the host machine to a virtual machine.  

 We developed a high-level software API that we named 
Composastructure that has the following capabilities: 

• Programmable, secure, persistent and reproducible 
infrastructure for use by both infrastructure engineers 
and data scientists 

• Simple API to compose machines and free resources, 
independent of various vendors’ APIs 

• High-level functionalities 

• Support for multi-rack operations 

• Python module for programmable notebooks that 
supports the above-mentioned capabilities 

COMPaaS DLV is funded by NSF award #1828265 to the University of 
Illinois Chicago. 



II. COMPOSASTRUCTURE 
Composastructure is a REST API that is higher level and 

easier to use than Liqid’s web-based API. Composastructure 
abstracts the low-level logic required to manipulate composable 
resources and provides programmability and reproducibility 
while maintaining security and persistence. We focused on 
abstracting Liqid APIs, but one could also abstract and integrate 
the APIs of other vendors (such as GigaIO, HPE, Fungible, etc.) 
in the same way, hiding their API specifics and complexities. 

Composastructure provides data scientists and infrastructure 
engineers with the following capabilities:  

• List of currently composed machines and their attached 
resources  

• List of available resources in the general pool  

• List of available PCI-express (PCIe) fabrics  

• Ability to compose, modify, and delete machines 

• Ability to monitor the state of the fabrics and save/restore 
an entire fabric at once (for use by infrastructure 
engineers) 

To build the Composastructure API, we first analyzed how 
the Liqid API handled machines and resource management. 
When we started this project, their API and the endpoints that 
were required were not fully documented. The existing graphical 
user interface (GUI) leveraged many of the API features, so our 
required abstraction was possible. We had to reverse engineer 
the GUI to understand their protocol to compose a machine. 
There was documentation for many of the API endpoints, but 
they lacked instructions on how to use the endpoints together. 
Chrome developer tools enabled us to observe when and what 
API endpoints were called while performing tasks with the GUI. 
With trial and error, we prototyped the composition and 
decomposition (freeing resources) of machines. 

Liqid’s API did not provide functionality to monitor the state 
of the infrastructure (machine creation, deletion, device update, 
etc.). Using reverse engineering, we determined that the GUI 
listened for server-side events (Stomp.js). We integrated these 
events into our API and determined that it was a safe strategy 
that did not interfere with using the vendor’s API and GUI.  

We first prototyped an API for infrastructure engineers to 
automatically create/delete a machine on COMPaaS. Since 
development was done in Node.js, useful libraries, like 
Express.js, made it easy to design an API and web application. 
Over time, we developed additional functionality based on 
observed needs.  

Given the variety and complexity of each of our use cases, 
restoring the state of COMPaaS’s infrastructure after a system 
failure or upgrade became burdensome to infrastructure 
engineers using Liqid’s point-and-click user interface. We 
added functionality to monitor, save and restore the state of the 
infrastructure, reducing restoration of a saved state from hours 
to minutes. Additional features included modifying the state of 
composed resources on machines and implementing a public, 
secure login portal, which enabled our infrastructure engineer to 
do remote administration of the composable equipment racks 

without using intermediary login portals for access. With these 
features developed, we built a custom user interface to test the 
endpoints of our API and to provide quicker access to common 
tasks (building a machine, adding a component to a machine, 
freeing resources, and switching between our three composable 
fabrics that consist of our two full racks and the small devkit 
system). With low-level tasks implemented and tested, we then 
focused on making these functions accessible to data scientists.  

Today, data science is predominantly conducted using 
programmable notebooks (primarily Jupyter) [4] to combine 
code, documentation, and visualization in a single resource. 
Cyberinfrastructure (CI) is becoming programmable (Software 
Defined Infrastructure), enabling data scientists and 
infrastructure engineers to configure CI to be reproducible and 
shareable. Some of COMPaaS’s early adopters already used 
Kubernetes to deploy and orchestrate their applications. One 
idea we had was to parse their configuration files for resource 
specifications and build appropriate machines matching their 
requirements. However, more of our faculty and students were 
familiar with Jupyter Notebooks, so we decided to expose our 
API as a Python module that could be loaded into a notebook. 
This gives data scientists better control over their resources and 
enables them to conduct their experiments in a controlled and 
reproducible fashion. Configurations, saved as code inside 
notebooks, can be shared with collaborators and students, and 
disseminated within their research communities.  

Our progress enabled composable infrastructure to be 
introduced to College of Engineering faculty through 
programmable APIs and services, exposed in computational 
notebooks, for interactive, reproducible and monitored 
experiments. We recently purchased an additional composable 
fabric to provide a JupyterHub frontend to support both our 
infrastructure engineers and our data scientists (JupyterHub 
launches Jupyter instances for each user of the system). The new 
fabric is overprovisioned (empty slots) to support future users 
and growing requirements. We believe that it was important to 
combine science workflows, which researchers use, with 
emerging technology to ensure early adoption.  

Composastructure was prototyped and tested on our three 
composable systems. It is mostly written in Typescript and is 
open source. We are making it available for research purposes 
in a GitHub repository but without guarantees or support [5]. 

III. COMPOSASTRUCTURE API  
Composastructure is comprised of a set of web routes 
(functions) and a server that hosts and runs those functions. We 
describe both aspects in the sections below. 

A. API Description 
This section shows elements of the Composastructure API 

that a programmer can use to operate the low-level fabric and 
compose machines out of available components (GPUs, SSDs, 
NICs and compute nodes). The code contains groups of web 
HTTP requests (i.e., routes), grouped into ‘collections,’ 
‘lookup,’ ‘details’ and ‘control’ routes. Parameters to those 
routes are shown between ‘{}’ (such as id or fabric_id). The 
requests are processed on a web server and return specific data 
types specified after the route’s name. All data-type definitions 



are available in the public source code repository. The server 
code is described in the next section. 

• Collections: Return the state of a particular group of 
elements in the system, such as groups, machines, available 
devices and fabrics (PCIe network). Groups are collections 
of machines defined by infrastructure engineers for 
administrative purposes. 
GET /api/groups: Group 
GET /api/machines: Machine 
GET /api/devices: Device 
GET /api/fabrics: Overview 

• Lookup: Given an element ID (within a specific fabric), it 
returns the elements within the requested components, such 
as a group, a machine, or a device. 
GET /api/group/{fabr_id}/{id}: Group 
GET /api/machine/{fabr_id}/{id}: Machine 
GET /api/device/{fabr_id}/{id}: Device 

• Details: Given an element ID, it returns detailed information 
about that element; e.g., CPU or RAM information for a 
machine, core count and speed for a GPU, or capacity for a 
SSD. 
GET /api/details/group/{fabr_id}/{id}: 
GroupDetails 
 
GET /api/details/machine/{fabr_id}/{id}: 
MachineDetails  
 
GET /api/details/device/{fabr_id}/{id}: 
DeviceDetails 
 

• Control: Control-group routes include the operation that a 
user can perform on a composable system, mainly 
composing a machine out of available components and 
deleting such a machine. 
POST /api/group GroupCreateOptions: GroupInfo 
 

POST /api/machine ComposeOptions: MachineInfo 
 

DELETE /api/group/{fabr_id}/{id}: GroupInfo 
 

DELETE /api/machine/{fabr_id}/{id}: MachineInfo 

B. Composastructure Server 
We provide a web server that hosts and execute the routes, 

translating the requests into low-level commands to the 
appropriate fabric. You can host this server, which composes 
resources on multiple composable fabrics, on any machine with 
network access to those fabrics. The server handles the HTTP 
requests on the routes defined above and returns results and error 
information when needed.  

The server is designed around two abstractions: an 
‘Observer’ class that monitors the state of fabric and gets 
notifications of all updates and changes happening internally, 
and a ‘Controller’ class that provides commands to operate on 
the infrastructure, such as composing a machine or releasing 
devices. We also added high-level functionalities, such as 
clearing a whole rack at once, saving a rack configuration into a 
JSON file, and restoring a rack from any previously saved state 
(useful after outages or system upgrades). All events and 

activities happening inside the system can also be recorded over 
time for analysis and auditing (all compose and decompose 
events, components used, etc.). 

var config: RestServerConfig = { 
    systems: [{ 
        ip: '10.0.100.125', 
        name: 'DevKit' 
    }], 
    hostPort: 3000, 
    enableGUI: true, 
    sslCert: { 
        privateKey: "XXX…", 
        certificate: "YYY…", 
        ca: "ZZZ…" 
    }, 
    adminLogin: { 
        username: 'admin', 
        password: 'compose' 
    } 
} 
 
var Server = new RestServer(config); 
 
Server.start().then(() => { 
    console.log('Server started'); 
}); 

You can set up an administrator account, secure the 
communication with SSL certificates (using HTTPS protocol), 
and run the service on a specific port. We also include an 
experimental web user interface built on top of our API that is 
easier to use and customizable for infrastructure engineers. 
Above is the server configuration and execution code. 

C. System Design 
The architecture diagram (Figure 1) shows the overall design of 
the system, where applications use our API to talk to a single 
server in order to discover available components over multiple 
PCIe fabrics. The applications can then request composing 
machines out of these available components. Our API handles 
the requests and returns results (information, success or failure) 
to the applications. As composable hardware becomes more 
commonly deployed from multiple vendors, Composastructure 
could be expanded to support multiple low-level vendor-specific 
APIs. 

 



 
Fig. 1. Composastructure System Architecture 

IV. DISCUSSION 
We used many common and tested packages to build our 

API and server, including Express.js [10] for the web 
framework, Passport.js [11] for authentication, and Socket.IO 
[9] for websocket communications. Passport.js enables 
authentication with many login strategies (Google, OpenId, 
CiLogon and many more). All services use secure 
communications with SSL certificates for data encryption. 
Socket.IO enables real-time bi-directional secure 
communication from the server to the clients listening for 
updates.  

After prototyping the Composastructure API in late 2020, 
our infrastructure engineers have been successfully using it and 
we are now considering exposing it to a subset of our data-
science users so they, too, can experience the benefits of 
composable infrastructure. It can be used to build an 
infrastructure predictably and reliably for many scenarios, from 
experimental testbeds to production systems. Commonly used 
packages and frameworks (Kubernetes, Containers, Jupyter, 
Python, REST APIs) can then be used to deploy the appropriate 
workload, from bare-metal experiments to container 
deployments. 

For infrastructure engineers, our work exposes the minimal 
overhead of composability, offering a higher utilization rate of 
the hardware without overprovisioning bare metal, and lowering 
the management load using a Software Defined Infrastructure. 
It enables engineers to rapidly build simple configurations (i.e., 
it removes repetitive tasks) and complex configurations 
precisely matching application and workflow requirements (i.e., 
complex configurations based on knowledge and experience 

using the infrastructure). This knowledge can be captured either 
as code in notebooks or as templates for later use. Higher-level 
APIs will be exposed to facilitate common tasks, such as 
decomposing a whole rack, restoring a rack to a known 
configuration (previously saved), composing many similar 
machines, etc. One can envision templates for Data Transfer 
Nodes (DTNs, high-speed disk-to-disk dataset transfers), large 
AI/ML model training, or high-throughput inference, to cite a 
few examples.  

To expose the potential of composable infrastructure to the 
widest audience (not just infrastructure engineers and advanced 
programmers), we developed a Python module for inclusion of 
composability in programmable notebooks. This enables 
experiments and system configurations to be done within a 
persistent, shareable and reproducible format [4]. 

Below are a few screenshots of such work, with our 
Composastructure API inside a Jupyter Notebook, showing how 
to initialize the API, to list available resources, to build a 
machine, and to add a device to a machine.  

Figure 2 shows the configuration of a client to communicate 
with the server (URL, name and password). The Python code is 
then loaded into a notebook (the only software dependency is 
the commonly used ‘requests’ Python module to perform REST 
calls). 

 
Fig. 2. Initialization 

Figure 3 shows how to request information about the state of 
the system for a given fabric (fabricId parameter). Here, three 
machines have been configured. We can request a list of all the 
devices in the system and see which ones are currently available. 
All data queries are presented in an easy-to-read format inside 
the notebook. 



 
Fig. 3. System State 

Figure 4 shows how easy it is to create a machine, given a 
list of available components. Here, compute node ‘pcpu2’ is 
combined with ‘gpu1’ and ‘ssd0’ to form a machine called 
‘demo’. The API returns ‘success’ if components are currently 
available and if the compose operation performs successfully. 

 
Fig. 4. Composing a Machine 

Figure 5 shows how to dynamically add a GPU and an SSD 
to an existing machine. More operations are available, such as 
releasing a component from a machine, decomposing a machine 
completely and information queries, described in our API 
description (Section III.A API Description). 

 
Fig. 5. Adding a Device to an Existing Machine 

 

Figure 6 shows how to delete components from an existing 
machine. 

 
Fig. 6. Removing a Device from an Existing Machine 

Finally, Figure 7 shows how to decompose a machine and 
return the hardware to the available pool of components. 

 
Fig. 7. Decompose a Machine 

V. CONCLUSIONS 
We presented our work to Liqid’s product management team 

and our lessons learned helped influence their future 
implementations. We discussed documentation improvements, 
changelog implementations, and Software Development Kit 
(SDK) designs based on our experiences. These changes and 
additions will make it easier for their customers to develop 
software for composable infrastructure as it becomes more 
widely deployed. 

Ben Bolles, Executive Director, Product Management, 
Liqid, said, “The University of Illinois Chicago team has been a 
tremendous development partner for Liqid through our joint 
collaboration on management and API integration projects, 
including integrating their management tools and Kubernetes 
with the Liqid composability and management APIs. … The 
team has helped influence and shape the Liqid software roadmap 
based on their early adoption of CDI (composable disaggregated 
infrastructure) for the benefit of other university researchers 
worldwide.” Our work and experiences are shared in a white 
paper and press releases on the company website [12]. 

Another example of integration of composable infrastructure 
into existing workflows is Liqid’s recent Slurm [6] integration. 
It better manages deployments of bare metal and containerized 
workloads and services for the composable infrastructure 
community. Slurm provides cluster management and job 
scheduling. This integration enables applications to request 
resources using Slurm, which are then automatically 
provisioned from a composable pool of available hardware. 



Liqid is also working towards future integrations with 
Kubernetes. 

We recently deployed an early prototype of GPUoE (GPU 
over Ethernet). Using a GPU expansion chassis connected to 
compute nodes over Ethernet, we were able to add remote GPUs 
into COMPaaS. Additional API endpoints were developed by 
the vendor to manage this type of remote GPU. We quickly 
extended our own work to support these functions. Hardware is 
now as malleable as software and, going forward, transitioning 
hardware resources between applications will become as 
commonplace as moving containers between hardware. This 
symbiosis of models creates an agile foundation for data 
scientists to continue to fully utilize resources and continue 
scientific progress.  

Composastructure API can be used by modern application 
workflows to compose machines, servers, or make hardware 
changes based on an application’s request. Concurrent work by 
industry to support Slurm and soon Kubernetes demonstrates a 
general trend in this direction. The popularity of Jupyter 
Notebooks and machine learning workload variability requires 
these types of responsive resources and infrastructures. Our API 
reduces the complexity of these emerging infrastructure designs 
and helps to lower the cost of management, while contributing 
techniques and best practices to the community.   
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